rosacastillo
commited on
Commit
·
8cb40a4
1
Parent(s):
1cdd678
new error graphs with markets
Browse files- app.py +26 -22
- tabs/error.py +140 -1
app.py
CHANGED
@@ -19,8 +19,6 @@ from tabs.metrics import (
|
|
19 |
default_trade_metric,
|
20 |
default_tool_metric,
|
21 |
plot_trade_metrics,
|
22 |
-
WIDTH,
|
23 |
-
HEIGHT,
|
24 |
get_trade_metrics_text,
|
25 |
)
|
26 |
|
@@ -44,11 +42,11 @@ from tabs.invalid_markets import (
|
|
44 |
)
|
45 |
|
46 |
from tabs.error import (
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
)
|
53 |
from tabs.about import about_olas_predict, about_this_dashboard
|
54 |
|
@@ -169,9 +167,10 @@ tools_df, trades_df, tools_accuracy_info, invalid_trades = prepare_data()
|
|
169 |
|
170 |
|
171 |
demo = gr.Blocks()
|
|
|
|
|
|
|
172 |
|
173 |
-
error_df = get_error_data(tools_df=tools_df, inc_tools=INC_TOOLS)
|
174 |
-
error_overall_df = get_error_data_overall(error_df=error_df)
|
175 |
winning_df = get_tool_winning_rate_by_market(tools_df, inc_tools=INC_TOOLS)
|
176 |
# preparing data for the trades graph
|
177 |
trades_count_df = get_overall_trades(trades_df=trades_df)
|
@@ -336,11 +335,6 @@ with demo:
|
|
336 |
with gr.Row():
|
337 |
daily_trades = plot_daily_dist_invalid_trades(invalid_trades)
|
338 |
|
339 |
-
# with gr.Row():
|
340 |
-
# gr.Markdown("# Ratio of invalid trades per market")
|
341 |
-
# with gr.Row():
|
342 |
-
# plot_ratio_invalid_trades_per_market(invalid_trades)
|
343 |
-
|
344 |
with gr.Row():
|
345 |
gr.Markdown("# Top markets with invalid trades")
|
346 |
with gr.Row():
|
@@ -355,7 +349,9 @@ with demo:
|
|
355 |
with gr.Row():
|
356 |
gr.Markdown("# All tools errors")
|
357 |
with gr.Row():
|
358 |
-
error_overall_plot =
|
|
|
|
|
359 |
with gr.Row():
|
360 |
gr.Markdown("# Error percentage per tool")
|
361 |
with gr.Row():
|
@@ -364,12 +360,14 @@ with demo:
|
|
364 |
)
|
365 |
|
366 |
with gr.Row():
|
367 |
-
tool_error_plot =
|
368 |
-
error_df=
|
369 |
)
|
370 |
|
371 |
def update_tool_error_plot(tool):
|
372 |
-
return
|
|
|
|
|
373 |
|
374 |
sel_tool.change(
|
375 |
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
|
@@ -383,7 +381,11 @@ with demo:
|
|
383 |
gr.Markdown("# Tools distribution of errors per week")
|
384 |
|
385 |
with gr.Row():
|
386 |
-
choices =
|
|
|
|
|
|
|
|
|
387 |
# sort the choices by the latest week to be on the top
|
388 |
choices = sorted(choices)
|
389 |
sel_week = gr.Dropdown(
|
@@ -391,12 +393,14 @@ with demo:
|
|
391 |
)
|
392 |
|
393 |
with gr.Row():
|
394 |
-
week_error_plot =
|
395 |
-
error_df=
|
396 |
)
|
397 |
|
398 |
def update_week_error_plot(selected_week):
|
399 |
-
return
|
|
|
|
|
400 |
|
401 |
sel_tool.change(
|
402 |
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
|
|
|
19 |
default_trade_metric,
|
20 |
default_tool_metric,
|
21 |
plot_trade_metrics,
|
|
|
|
|
22 |
get_trade_metrics_text,
|
23 |
)
|
24 |
|
|
|
42 |
)
|
43 |
|
44 |
from tabs.error import (
|
45 |
+
plot_week_error_data_by_market,
|
46 |
+
plot_error_data_by_market,
|
47 |
+
get_error_data_by_market,
|
48 |
+
get_error_data_overall_by_market,
|
49 |
+
plot_tool_error_data_by_market,
|
50 |
)
|
51 |
from tabs.about import about_olas_predict, about_this_dashboard
|
52 |
|
|
|
167 |
|
168 |
|
169 |
demo = gr.Blocks()
|
170 |
+
# preparing data for the errors
|
171 |
+
error_by_markets = get_error_data_by_market(tools_df=tools_df, inc_tools=INC_TOOLS)
|
172 |
+
error_overall_by_markets = get_error_data_overall_by_market(error_df=error_by_markets)
|
173 |
|
|
|
|
|
174 |
winning_df = get_tool_winning_rate_by_market(tools_df, inc_tools=INC_TOOLS)
|
175 |
# preparing data for the trades graph
|
176 |
trades_count_df = get_overall_trades(trades_df=trades_df)
|
|
|
335 |
with gr.Row():
|
336 |
daily_trades = plot_daily_dist_invalid_trades(invalid_trades)
|
337 |
|
|
|
|
|
|
|
|
|
|
|
338 |
with gr.Row():
|
339 |
gr.Markdown("# Top markets with invalid trades")
|
340 |
with gr.Row():
|
|
|
349 |
with gr.Row():
|
350 |
gr.Markdown("# All tools errors")
|
351 |
with gr.Row():
|
352 |
+
error_overall_plot = plot_error_data_by_market(
|
353 |
+
error_all_df=error_overall_by_markets
|
354 |
+
)
|
355 |
with gr.Row():
|
356 |
gr.Markdown("# Error percentage per tool")
|
357 |
with gr.Row():
|
|
|
360 |
)
|
361 |
|
362 |
with gr.Row():
|
363 |
+
tool_error_plot = plot_tool_error_data_by_market(
|
364 |
+
error_df=error_by_markets, tool=INC_TOOLS[0]
|
365 |
)
|
366 |
|
367 |
def update_tool_error_plot(tool):
|
368 |
+
return plot_tool_error_data_by_market(
|
369 |
+
error_df=error_by_markets, tool=tool
|
370 |
+
)
|
371 |
|
372 |
sel_tool.change(
|
373 |
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
|
|
|
381 |
gr.Markdown("# Tools distribution of errors per week")
|
382 |
|
383 |
with gr.Row():
|
384 |
+
choices = (
|
385 |
+
error_overall_by_markets["request_month_year_week"]
|
386 |
+
.unique()
|
387 |
+
.tolist()
|
388 |
+
)
|
389 |
# sort the choices by the latest week to be on the top
|
390 |
choices = sorted(choices)
|
391 |
sel_week = gr.Dropdown(
|
|
|
393 |
)
|
394 |
|
395 |
with gr.Row():
|
396 |
+
week_error_plot = plot_week_error_data_by_market(
|
397 |
+
error_df=error_by_markets, week=choices[-1]
|
398 |
)
|
399 |
|
400 |
def update_week_error_plot(selected_week):
|
401 |
+
return plot_week_error_data_by_market(
|
402 |
+
error_df=error_by_markets, week=selected_week
|
403 |
+
)
|
404 |
|
405 |
sel_tool.change(
|
406 |
update_tool_error_plot, inputs=sel_tool, outputs=tool_error_plot
|
tabs/error.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
from typing import List
|
|
|
|
|
4 |
|
5 |
|
6 |
HEIGHT = 600
|
@@ -22,6 +24,25 @@ def get_error_data(tools_df: pd.DataFrame, inc_tools: List[str]) -> pd.DataFrame
|
|
22 |
return error
|
23 |
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def get_error_data_overall(error_df: pd.DataFrame) -> pd.DataFrame:
|
26 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
27 |
error_total = (
|
@@ -35,6 +56,19 @@ def get_error_data_overall(error_df: pd.DataFrame) -> pd.DataFrame:
|
|
35 |
return error_total
|
36 |
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
def plot_error_data(error_all_df: pd.DataFrame) -> gr.BarPlot:
|
39 |
"""Plots the error data for the given tools and calculates the error percentage."""
|
40 |
return gr.BarPlot(
|
@@ -53,6 +87,44 @@ def plot_error_data(error_all_df: pd.DataFrame) -> gr.BarPlot:
|
|
53 |
)
|
54 |
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
57 |
"""Plots the error data for the given tool."""
|
58 |
error_tool = error_df[error_df["tool"] == tool]
|
@@ -62,7 +134,7 @@ def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
|
62 |
return gr.BarPlot(
|
63 |
title="Error Percentage",
|
64 |
x_title="Week",
|
65 |
-
y_title="Error Percentage",
|
66 |
show_label=True,
|
67 |
interactive=True,
|
68 |
show_actions_button=True,
|
@@ -75,6 +147,47 @@ def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
|
75 |
)
|
76 |
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
79 |
"""Plots the error data for the given week."""
|
80 |
error_week = error_df[error_df["request_month_year_week"] == week]
|
@@ -94,3 +207,29 @@ def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
|
94 |
height=HEIGHT,
|
95 |
width=WIDTH,
|
96 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
from typing import List
|
4 |
+
import plotly.express as px
|
5 |
+
from tabs.tool_win import sort_key
|
6 |
|
7 |
|
8 |
HEIGHT = 600
|
|
|
24 |
return error
|
25 |
|
26 |
|
27 |
+
def get_error_data_by_market(
|
28 |
+
tools_df: pd.DataFrame, inc_tools: List[str]
|
29 |
+
) -> pd.DataFrame:
|
30 |
+
"""Gets the error data for the given tools and calculates the error percentage."""
|
31 |
+
tools_inc = tools_df[tools_df["tool"].isin(inc_tools)]
|
32 |
+
error = (
|
33 |
+
tools_inc.groupby(
|
34 |
+
["tool", "request_month_year_week", "market_creator", "error"], sort=False
|
35 |
+
)
|
36 |
+
.size()
|
37 |
+
.unstack()
|
38 |
+
.fillna(0)
|
39 |
+
.reset_index()
|
40 |
+
)
|
41 |
+
error["error_perc"] = (error[1] / (error[0] + error[1])) * 100
|
42 |
+
error["total_requests"] = error[0] + error[1]
|
43 |
+
return error
|
44 |
+
|
45 |
+
|
46 |
def get_error_data_overall(error_df: pd.DataFrame) -> pd.DataFrame:
|
47 |
"""Gets the error data for the given tools and calculates the error percentage."""
|
48 |
error_total = (
|
|
|
56 |
return error_total
|
57 |
|
58 |
|
59 |
+
def get_error_data_overall_by_market(error_df: pd.DataFrame) -> pd.DataFrame:
|
60 |
+
"""Gets the error data for the given tools and calculates the error percentage."""
|
61 |
+
error_total = (
|
62 |
+
error_df.groupby(["request_month_year_week", "market_creator"], sort=False)
|
63 |
+
.agg({"total_requests": "sum", 1: "sum", 0: "sum"})
|
64 |
+
.reset_index()
|
65 |
+
)
|
66 |
+
error_total["error_perc"] = (error_total[1] / error_total["total_requests"]) * 100
|
67 |
+
error_total.columns = error_total.columns.astype(str)
|
68 |
+
error_total["error_perc"] = error_total["error_perc"].apply(lambda x: round(x, 4))
|
69 |
+
return error_total
|
70 |
+
|
71 |
+
|
72 |
def plot_error_data(error_all_df: pd.DataFrame) -> gr.BarPlot:
|
73 |
"""Plots the error data for the given tools and calculates the error percentage."""
|
74 |
return gr.BarPlot(
|
|
|
87 |
)
|
88 |
|
89 |
|
90 |
+
def plot_error_data_by_market(error_all_df: pd.DataFrame) -> gr.Plot:
|
91 |
+
|
92 |
+
# Sort the unique values of request_month_year_week
|
93 |
+
sorted_categories = sorted(
|
94 |
+
error_all_df["request_month_year_week"].unique(), key=sort_key
|
95 |
+
)
|
96 |
+
# Create a categorical type with a specific order
|
97 |
+
error_all_df["request_month_year_week"] = pd.Categorical(
|
98 |
+
error_all_df["request_month_year_week"],
|
99 |
+
categories=sorted_categories,
|
100 |
+
ordered=True,
|
101 |
+
)
|
102 |
+
|
103 |
+
# Sort the DataFrame based on the new categorical column
|
104 |
+
error_all_df = error_all_df.sort_values("request_month_year_week")
|
105 |
+
|
106 |
+
fig = px.bar(
|
107 |
+
error_all_df,
|
108 |
+
x="request_month_year_week",
|
109 |
+
y="error_perc",
|
110 |
+
color="market_creator",
|
111 |
+
barmode="group",
|
112 |
+
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
|
113 |
+
category_orders={
|
114 |
+
"market_creator": ["pearl", "quickstart", "all"],
|
115 |
+
"request_month_year_week": sorted_categories,
|
116 |
+
},
|
117 |
+
)
|
118 |
+
fig.update_layout(
|
119 |
+
xaxis_title="Week",
|
120 |
+
yaxis_title="Error Percentage",
|
121 |
+
legend=dict(yanchor="top", y=0.5),
|
122 |
+
)
|
123 |
+
fig.update_layout(width=WIDTH, height=HEIGHT)
|
124 |
+
fig.update_xaxes(tickformat="%b %d\n%Y")
|
125 |
+
return gr.Plot(value=fig)
|
126 |
+
|
127 |
+
|
128 |
def plot_tool_error_data(error_df: pd.DataFrame, tool: str) -> gr.BarPlot:
|
129 |
"""Plots the error data for the given tool."""
|
130 |
error_tool = error_df[error_df["tool"] == tool]
|
|
|
134 |
return gr.BarPlot(
|
135 |
title="Error Percentage",
|
136 |
x_title="Week",
|
137 |
+
y_title="Error Percentage %",
|
138 |
show_label=True,
|
139 |
interactive=True,
|
140 |
show_actions_button=True,
|
|
|
147 |
)
|
148 |
|
149 |
|
150 |
+
def plot_tool_error_data_by_market(error_df: pd.DataFrame, tool: str) -> gr.Plot:
|
151 |
+
error_tool = error_df[error_df["tool"] == tool]
|
152 |
+
error_tool.columns = error_tool.columns.astype(str)
|
153 |
+
error_tool["error_perc"] = error_tool["error_perc"].apply(lambda x: round(x, 4))
|
154 |
+
|
155 |
+
# Sort the unique values of request_month_year_week
|
156 |
+
sorted_categories = sorted(
|
157 |
+
error_tool["request_month_year_week"].unique(), key=sort_key
|
158 |
+
)
|
159 |
+
# Create a categorical type with a specific order
|
160 |
+
error_tool["request_month_year_week"] = pd.Categorical(
|
161 |
+
error_tool["request_month_year_week"],
|
162 |
+
categories=sorted_categories,
|
163 |
+
ordered=True,
|
164 |
+
)
|
165 |
+
|
166 |
+
# Sort the DataFrame based on the new categorical column
|
167 |
+
error_tool = error_tool.sort_values("request_month_year_week")
|
168 |
+
|
169 |
+
fig = px.bar(
|
170 |
+
error_tool,
|
171 |
+
x="request_month_year_week",
|
172 |
+
y="error_perc",
|
173 |
+
color="market_creator",
|
174 |
+
barmode="group",
|
175 |
+
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
|
176 |
+
category_orders={
|
177 |
+
"market_creator": ["pearl", "quickstart", "all"],
|
178 |
+
"request_month_year_week": sorted_categories,
|
179 |
+
},
|
180 |
+
)
|
181 |
+
fig.update_layout(
|
182 |
+
xaxis_title="Week",
|
183 |
+
yaxis_title="Error Percentage %",
|
184 |
+
legend=dict(yanchor="top", y=0.5),
|
185 |
+
)
|
186 |
+
fig.update_layout(width=WIDTH, height=HEIGHT)
|
187 |
+
fig.update_xaxes(tickformat="%b %d\n%Y")
|
188 |
+
return gr.Plot(value=fig)
|
189 |
+
|
190 |
+
|
191 |
def plot_week_error_data(error_df: pd.DataFrame, week: str) -> gr.BarPlot:
|
192 |
"""Plots the error data for the given week."""
|
193 |
error_week = error_df[error_df["request_month_year_week"] == week]
|
|
|
207 |
height=HEIGHT,
|
208 |
width=WIDTH,
|
209 |
)
|
210 |
+
|
211 |
+
|
212 |
+
def plot_week_error_data_by_market(error_df: pd.DataFrame, week: str) -> gr.Plot:
|
213 |
+
error_week = error_df[error_df["request_month_year_week"] == week]
|
214 |
+
error_week.columns = error_week.columns.astype(str)
|
215 |
+
error_week["error_perc"] = error_week["error_perc"].apply(lambda x: round(x, 4))
|
216 |
+
|
217 |
+
fig = px.bar(
|
218 |
+
error_week,
|
219 |
+
x="tool",
|
220 |
+
y="error_perc",
|
221 |
+
color="market_creator",
|
222 |
+
barmode="group",
|
223 |
+
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
|
224 |
+
category_orders={
|
225 |
+
"market_creator": ["pearl", "quickstart", "all"],
|
226 |
+
},
|
227 |
+
)
|
228 |
+
fig.update_layout(
|
229 |
+
xaxis_title="Tool",
|
230 |
+
yaxis_title="Error Percentage %",
|
231 |
+
legend=dict(yanchor="top", y=0.5),
|
232 |
+
)
|
233 |
+
fig.update_layout(width=WIDTH, height=HEIGHT)
|
234 |
+
fig.update_xaxes(tickformat="%b %d\n%Y")
|
235 |
+
return gr.Plot(value=fig)
|