File size: 4,984 Bytes
6650ee4
 
 
 
 
ccf7d04
 
7055307
6650ee4
0d2d09d
6650ee4
 
 
 
 
 
 
 
 
7055307
3c305fd
 
7055307
3c305fd
 
 
6650ee4
5d73a55
7055307
ccf7d04
 
 
 
 
 
 
 
 
 
6650ee4
7055307
 
 
 
 
 
6650ee4
 
 
 
 
 
 
 
 
 
 
 
 
0d2d09d
6650ee4
 
 
 
 
 
 
ccf7d04
6650ee4
7055307
5d73a55
 
 
 
 
7055307
6650ee4
7055307
6650ee4
5d73a55
6650ee4
 
5d73a55
6650ee4
 
5d73a55
7055307
 
 
6650ee4
5d73a55
 
 
 
 
6650ee4
 
5d73a55
 
 
 
7055307
 
 
 
 
 
 
 
 
 
6650ee4
5d73a55
6650ee4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torch
import transformers
import gradio as gr
from ragatouille import RAGPretrainedModel
from huggingface_hub import InferenceClient
import re
from datetime import datetime
import json

retrieve_results = 10 

generate_kwargs = dict(
    temperature = None,
    max_new_tokens = 512,
    top_p = None,
    do_sample = False,
    )

RAG = RAGPretrainedModel.from_index("colbert/indexes/arxiv_colbert")

try:
  gr.Info("Setting up retriever, please wait...")
  rag_initial_output = RAG.search("what is Mistral?", k = 1)
  gr.Info("Retriever working successfully!")
except:
  gr.Warning("Retriever not working!")

mark_text = '# 🔍 Search Results\n'
header_text = "# ArXivCS RAG \n"
try:
  with open("README.md", "r") as f:
      mdfile = f.read()
  date_pattern = r'Index Last Updated : \d{4}-\d{2}-\d{2}'
  match = re.search(date_pattern, mdfile)
  date = match.group().split(': ')[1]
  formatted_date = datetime.strptime(date, '%Y-%m-%d').strftime('%d %b %Y')
  header_text += f'Index Last Updated: {formatted_date}\n'
except:
  pass

with open("sample_outputs.json", "r") as f:
  sample_outputs = json.load(f)
output_placeholder = sample_outputs['output_placeholder']
md_text_initial = sample_outputs['search_placeholder']


def rag_cleaner(inp):
    rank = inp['rank']
    title = inp['document_metadata']['title']
    content = inp['content']
    return f"{rank}. <b> {title} </b> \n Abstract: {content}"

def get_prompt_text(question, context, formatted = True):
    if formatted:
      sys_instruction = f"Context:\n {context} \n Given the following scientific paper abstracts, take a deep breath and lets think step by step to answer what the question. Cite the titles of your sources when answering."
      message = f"Question: {question}"
      return f"<s>" + f"[INST] {sys_instruction} " +  f" {message} [/INST] </s> "
    return f"Context:\n {context} \n Given the following info, take a deep breath and lets think step by step to answer the question: {question}. Cite the titles of your sources when answering.\n\n"

def get_references(question, retriever, k = retrieve_results):
    rag_out = retriever.search(query=question, k=k)
    return rag_out

def get_rag(message):
        return get_references(message, RAG)

with gr.Blocks(theme = gr.themes.Soft()) as demo:
    header = gr.Markdown(header_text)
    with gr.Group():
      msg = gr.Textbox(label = 'Search', placeholder = 'What is Mistral?')
      with gr.Accordion("Advanced Settings", open=False):
        with gr.Row(equal_height = True):
          llm_model = gr.Dropdown(choices = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'None'], value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
          llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results to sent as context")

    output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True, placeholder = output_placeholder)
    input = gr.Textbox(show_label = False, visible = False)
    gr_md = gr.Markdown(mark_text + md_text_initial)

    def update_with_rag_md(message, llm_results_use = 5):
        rag_out = get_rag(message)
        md_text_updated = mark_text
        for i in range(retrieve_results):
          rag_answer = rag_out[i]
          title = rag_answer['document_metadata']['title'].replace('\n','')

          #score = round(rag_answer['score'], 2)
          date = rag_answer['document_metadata']['_time']
          paper_title = f'''### {date} | [{title}](https://arxiv.org/abs/{rag_answer['document_id']}) | [⬇️](https://arxiv.org/pdf/{rag_answer['document_id']})\n'''
          paper_abs = rag_answer['content']
          authors = rag_answer['document_metadata']['authors'].replace('\n','')
          authors_formatted = f'*{authors}*' + ' \n\n'
        
          md_text_updated += paper_title + authors_formatted + paper_abs +  '\n---------------\n'+ '\n'
        prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results_use]))
        return md_text_updated, prompt

    def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
       if llm_model_picked == 'None':
          return gr.Textbox(visible = False)
       client = InferenceClient(llm_model_picked)
       #output = client.text_generation(prompt, **generate_kwargs,  stream=False, details=False, return_full_text=False)
       stream = client.text_generation(prompt, **generate_kwargs,  stream=True, details=True, return_full_text=False)
       #output = output.lstrip(' \n') if output.lstrip().startswith('\n') else output
       output = ""

       for response in stream:
          output += response.token.text
          yield output
       return output
       #return gr.Textbox(output, visible = True)

    msg.submit(update_with_rag_md, [msg, llm_results], [gr_md, input]).success(ask_llm, [input, llm_model], output_text)

demo.launch(debug = True)