bishmoy commited on
Commit
5d73a55
·
verified ·
1 Parent(s): 0d2d09d

Added option for selecting LLM and number of abstracts as input

Browse files
Files changed (1) hide show
  1. app.py +22 -11
app.py CHANGED
@@ -5,9 +5,6 @@ from ragatouille import RAGPretrainedModel
5
  from huggingface_hub import InferenceClient
6
 
7
  retrieve_results = 10
8
- llm_results = 5
9
-
10
- client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
11
 
12
  generate_kwargs = dict(
13
  temperature = None,
@@ -24,7 +21,7 @@ try:
24
  except:
25
  gr.Warning("Retriever not working!")
26
 
27
- mark_text = '# 📚 Search Results\n'
28
 
29
  def rag_cleaner(inp):
30
  rank = inp['rank']
@@ -47,29 +44,43 @@ def get_rag(message):
47
  return get_references(message, RAG)
48
 
49
  with gr.Blocks(theme = gr.themes.Soft()) as demo:
 
50
  with gr.Group():
51
  msg = gr.Textbox(label = 'Search')
 
 
 
 
 
52
  output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True)
53
  input = gr.Textbox(show_label = False, visible = False)
54
  gr_md = gr.Markdown(mark_text)
55
 
56
- def update_with_rag_md(message):
57
  rag_out = get_rag(message)
58
  md_text_updated = mark_text
59
- for i in range(10):
60
  rag_answer = rag_out[i]
61
  title = rag_answer['document_metadata']['title'].replace('\n','')
62
- paper_title = f'''### [{title}](https://arxiv.org/abs/{rag_answer['document_id']})\n'''
 
 
63
  paper_abs = rag_answer['content']
64
- md_text_updated += paper_title + paper_abs + '\n---------------\n'+ '\n'
65
- prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results]))
 
 
 
66
  return md_text_updated, prompt
67
 
68
- def ask_llm(prompt):
 
 
 
69
  output = client.text_generation(prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
70
  output = output.lstrip(' \n') if output.lstrip().startswith('\n') else output
71
  return gr.Textbox(output, visible = True)
72
 
73
- msg.submit(update_with_rag_md, msg, [gr_md, input]).success(ask_llm, input, output_text)
74
 
75
  demo.launch(debug = True)
 
5
  from huggingface_hub import InferenceClient
6
 
7
  retrieve_results = 10
 
 
 
8
 
9
  generate_kwargs = dict(
10
  temperature = None,
 
21
  except:
22
  gr.Warning("Retriever not working!")
23
 
24
+ mark_text = '# 🔍 Search Results\n'
25
 
26
  def rag_cleaner(inp):
27
  rank = inp['rank']
 
44
  return get_references(message, RAG)
45
 
46
  with gr.Blocks(theme = gr.themes.Soft()) as demo:
47
+ header = gr.Markdown("# ArXiv RAG")
48
  with gr.Group():
49
  msg = gr.Textbox(label = 'Search')
50
+ with gr.Accordion("Advanced Settings", open=False):
51
+ with gr.Row(equal_height = True):
52
+ llm_model = gr.Dropdown(choices = ['mistralai/Mixtral-8x7B-Instruct-v0.1','mistralai/Mistral-7B-Instruct-v0.2', 'None'], value = 'mistralai/Mistral-7B-Instruct-v0.2', label = 'LLM Model')
53
+ llm_results = gr.Slider(minimum=4, maximum=10, value=5, step=1, interactive=True, label="Top n results to sent as context")
54
+
55
  output_text = gr.Textbox(show_label = True, container = True, label = 'LLM Answer', visible = True)
56
  input = gr.Textbox(show_label = False, visible = False)
57
  gr_md = gr.Markdown(mark_text)
58
 
59
+ def update_with_rag_md(message, llm_results_use = 5):
60
  rag_out = get_rag(message)
61
  md_text_updated = mark_text
62
+ for i in range(retrieve_results):
63
  rag_answer = rag_out[i]
64
  title = rag_answer['document_metadata']['title'].replace('\n','')
65
+
66
+ score = round(rag_answer['score'], 2)
67
+ paper_title = f'''### **{score}** | [{title}](https://arxiv.org/abs/{rag_answer['document_id']})\n'''
68
  paper_abs = rag_answer['content']
69
+ authors = rag_answer['document_metadata']['authors'].replace('\n','')
70
+ authors_formatted = f'*{authors}*' + ' \n\n'
71
+
72
+ md_text_updated += paper_title + authors_formatted + paper_abs + '\n---------------\n'+ '\n'
73
+ prompt = get_prompt_text(message, '\n\n'.join(rag_cleaner(out) for out in rag_out[:llm_results_use]))
74
  return md_text_updated, prompt
75
 
76
+ def ask_llm(prompt, llm_model_picked = 'mistralai/Mistral-7B-Instruct-v0.2'):
77
+ if llm_model_picked == 'None':
78
+ return gr.Textbox(visible = False)
79
+ client = InferenceClient(llm_model_picked)
80
  output = client.text_generation(prompt, **generate_kwargs, stream=False, details=False, return_full_text=False)
81
  output = output.lstrip(' \n') if output.lstrip().startswith('\n') else output
82
  return gr.Textbox(output, visible = True)
83
 
84
+ msg.submit(update_with_rag_md, [msg, llm_results], [gr_md, input]).success(ask_llm, [input, llm_model], output_text)
85
 
86
  demo.launch(debug = True)