Spaces:
Runtime error
Runtime error
File size: 5,231 Bytes
a5f8a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
import math
import os
import random
from typing import Callable, Dict, List
import albumentations as alb
import numpy as np
import torch
from torch.utils.data import Dataset
from virtex.data.readers import LmdbReader
from virtex.data.tokenizers import SentencePieceBPETokenizer
from virtex.data import transforms as T
class MaskedLmDataset(Dataset):
def __init__(
self,
data_root: str,
split: str,
tokenizer: SentencePieceBPETokenizer,
image_transform: Callable = T.DEFAULT_IMAGE_TRANSFORM,
mask_proportion: float = 0.15,
mask_probability: float = 0.80,
replace_probability: float = 0.10,
max_caption_length: int = 30,
use_single_caption: bool = False,
percentage: float = 100.0,
):
lmdb_path = os.path.join(data_root, f"serialized_{split}.lmdb")
self.reader = LmdbReader(lmdb_path, percentage=percentage)
self.image_transform = image_transform
self.caption_transform = alb.Compose(
[
T.NormalizeCaption(),
T.TokenizeCaption(tokenizer),
T.TruncateCaptionTokens(max_caption_length),
]
)
self.use_single_caption = use_single_caption
self.padding_idx = tokenizer.token_to_id("<unk>")
# Handles to commonly used variables for word masking.
self._vocab_size = tokenizer.get_vocab_size()
self._mask_index = tokenizer.token_to_id("[MASK]")
self._mask_proportion = mask_proportion
self._mask_prob = mask_probability
self._repl_prob = replace_probability
def __len__(self):
return len(self.reader)
def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
image_id, image, captions = self.reader[idx]
# Pick a random caption or first caption and process (transform) it.
if self.use_single_caption:
caption = captions[0]
else:
caption = random.choice(captions)
# Transform image-caption pair and convert image from HWC to CHW format.
# Pass in caption to image_transform due to paired horizontal flip.
# Caption won't be tokenized/processed here.
image_caption = self.image_transform(image=image, caption=caption)
image, caption = image_caption["image"], image_caption["caption"]
image = np.transpose(image, (2, 0, 1))
caption_tokens = self.caption_transform(caption=caption)["caption"]
# ---------------------------------------------------------------------
# Mask some tokens randomly.
# ---------------------------------------------------------------------
masked_labels = [self.padding_idx] * len(caption_tokens)
# Indices in `caption_tokens` list to mask (minimum 1 index).
# Leave out first and last indices (boundary tokens).
tokens_to_mask: List[int] = random.sample(
list(range(1, len(caption_tokens) - 1)),
math.ceil((len(caption_tokens) - 2) * self._mask_proportion),
)
for i in tokens_to_mask:
# Whether to replace with [MASK] or random word.
# If only one token, always [MASK].
if len(tokens_to_mask) == 1:
masked_labels[i] = caption_tokens[i]
caption_tokens[i] = self._mask_index
else:
_flag: float = random.random()
if _flag <= self._mask_prob + self._repl_prob:
if _flag <= self._mask_prob:
masked_labels[i] = caption_tokens[i]
caption_tokens[i] = self._mask_index
else:
caption_tokens[i] = self._random_token_index()
# ---------------------------------------------------------------------
return {
"image_id": torch.tensor(image_id, dtype=torch.long),
"image": torch.tensor(image, dtype=torch.float),
"caption_tokens": torch.tensor(caption_tokens, dtype=torch.long),
"masked_labels": torch.tensor(masked_labels, dtype=torch.long),
"caption_lengths": torch.tensor(len(caption_tokens), dtype=torch.long),
}
def collate_fn(
self, data: List[Dict[str, torch.Tensor]]
) -> Dict[str, torch.Tensor]:
# Pad `caption_tokens` and `masked_labels` up to this length.
caption_tokens = torch.nn.utils.rnn.pad_sequence(
[d["caption_tokens"] for d in data],
batch_first=True,
padding_value=self.padding_idx,
)
masked_labels = torch.nn.utils.rnn.pad_sequence(
[d["masked_labels"] for d in data],
batch_first=True,
padding_value=self.padding_idx,
)
return {
"image_id": torch.stack([d["image_id"] for d in data], dim=0),
"image": torch.stack([d["image"] for d in data], dim=0),
"caption_tokens": caption_tokens,
"masked_labels": masked_labels,
"caption_lengths": torch.stack([d["caption_lengths"] for d in data]),
}
def _random_token_index(self) -> int:
return random.randint(0, self._vocab_size - 1)
|