Spaces:
Runtime error
Runtime error
File size: 7,663 Bytes
a5f8a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import random
from typing import List
import unicodedata
import albumentations as alb
import cv2
from virtex.data.tokenizers import SentencePieceBPETokenizer
class CaptionOnlyTransform(alb.BasicTransform):
r"""
A base class for custom `albumentations <https://albumentations.readthedocs.io/en/latest/>`_
transform, which can transform captions. Captions may be ``str``, or tokens
(``List[int]``) as per implementation of :meth:`apply_to_caption`. These
transforms will have consistent API as other transforms from albumentations.
"""
@property
def targets(self):
return {"caption": self.apply_to_caption}
def apply_to_caption(self, caption, **params):
raise NotImplementedError
def update_params(self, params, **kwargs):
# Super class adds "width" and "height" but we don't have image here.
return params
class ImageCaptionTransform(alb.BasicTransform):
r"""
Similar to :class:`~virtex.data.transforms.CaptionOnlyTransform`, this
extends super class to work on ``(image, caption)`` pair together.
"""
@property
def targets(self):
return {"image": self.apply, "caption": self.apply_to_caption}
def apply_to_caption(self):
raise NotImplementedError
class NormalizeCaption(CaptionOnlyTransform):
r"""
Perform common normalization with caption: lowercase, trim leading and
trailing whitespaces, NFKD normalization and strip accents.
Examples
--------
>>> normalize = NormalizeCaption(always_apply=True)
>>> out = normalize(caption="Some caption input here.") # keys: {"caption"}
"""
def __init__(self):
# `always_apply = True` because this is essential part of pipeline.
super().__init__(always_apply=True)
def apply_to_caption(self, caption: str, **params) -> str:
caption = caption.lower()
caption = unicodedata.normalize("NFKD", caption)
caption = "".join([chr for chr in caption if not unicodedata.combining(chr)])
return caption
class TokenizeCaption(CaptionOnlyTransform):
r"""
Tokenize a caption (``str``) to list of tokens (``List[int]``) by the
mapping defined in :attr:`tokenizer`.
Parameters
----------
tokenizer: virtex.data.tokenizers.SentencePieceBPETokenizer
A :class:`~virtex.data.tokenizers.SentencePieceBPETokenizer` which encodes
a caption into tokens.
add_boundaries: bool, optional (defalult = True)
Whether to add ``[SOS]`` and ``[EOS]`` boundary tokens from tokenizer.
Examples
--------
>>> tokenizer = SentencePieceBPETokenizer("coco.vocab", "coco.model")
>>> tokenize = TokenizeCaption(tokenizer, always_apply=True)
>>> out = tokenize(caption="Some caption input here.") # keys: {"caption"}
"""
def __init__(self, tokenizer: SentencePieceBPETokenizer):
# `always_apply = True` because this is essential part of pipeline.
super().__init__(always_apply=True)
self.tokenizer = tokenizer
def apply_to_caption(self, caption: str, **params) -> List[int]:
token_indices: List[int] = self.tokenizer.encode(caption)
# Add boundary tokens.
token_indices.insert(0, self.tokenizer.token_to_id("[SOS]"))
token_indices.append(self.tokenizer.token_to_id("[EOS]"))
return token_indices
def get_transform_init_args_names(self):
return ("tokenizer",)
class TruncateCaptionTokens(CaptionOnlyTransform):
r"""
Truncate a list of caption tokens (``List[int]``) to maximum length.
Parameters
----------
max_caption_length: int, optional (default = 30)
Maximum number of tokens to keep in output caption tokens. Extra tokens
will be trimmed from the right end of the token list.
Examples
--------
>>> truncate = TruncateCaptionTokens(max_caption_length=5, always_apply=True)
>>> out = truncate(caption=[2, 35, 41, 67, 98, 50, 3])
>>> out["caption"]
[2, 35, 41, 67, 98]
"""
def __init__(self, max_caption_length: int = 30):
# `always_apply = True` because this is essential part of pipeline.
super().__init__(always_apply=True)
self.max_caption_length = max_caption_length
def apply_to_caption(self, caption: List[int], **params) -> List[int]:
return caption[: self.max_caption_length]
def get_transform_init_args_names(self):
return ("max_caption_length",)
class HorizontalFlip(ImageCaptionTransform):
r"""
Flip the image horizontally randomly (equally likely) and replace the
word "left" with "right" in the caption.
.. note::
This transform can also work on images only (without the captions).
Its behavior will be same as albumentations
:class:`~albumentations.augmentations.transforms.HorizontalFlip`.
Examples
--------
>>> flip = HorizontalFlip(p=0.5)
>>> out1 = flip(image=image, caption=caption) # keys: {"image", "caption"}
>>> # Also works with images (without caption).
>>> out2 = flip(image=image) # keys: {"image"}
"""
def apply(self, img, **params):
return cv2.flip(img, 1)
def apply_to_caption(self, caption, **params):
caption = (
caption.replace("left", "[TMP]")
.replace("right", "left")
.replace("[TMP]", "right")
)
return caption
class RandomResizedSquareCrop(alb.RandomResizedCrop):
r"""
A variant of :class:`albumentations.augmentations.transforms.RandomResizedCrop`
which assumes a square crop (width = height). Everything else is same.
Parameters
----------
size: int
Dimension of the width and height of the cropped image.
"""
def __init__(self, size: int, *args, **kwargs):
super().__init__(height=size, width=size, *args, **kwargs)
class CenterSquareCrop(alb.CenterCrop):
r"""
A variant of :class:`albumentations.augmentations.transforms.CenterCrop` which
assumes a square crop (width = height). Everything else is same.
Parameters
----------
size: int
Dimension of the width and height of the cropped image.
"""
def __init__(self, size: int, *args, **kwargs):
super().__init__(height=size, width=size, *args, **kwargs)
class SquareResize(alb.Resize):
r"""
A variant of :class:`albumentations.augmentations.transforms.Resize` which
assumes a square resize (width = height). Everything else is same.
Parameters
----------
size: int
Dimension of the width and height of the resized image.
"""
def __init__(self, size: int, *args, **kwargs):
super().__init__(height=size, width=size, *args, **kwargs)
# =============================================================================
# SOME COMMON CONSTANTS AND IMAGE TRANSFORMS:
# These serve as references here, and are used as default params in many
# dataset class constructors.
# -----------------------------------------------------------------------------
IMAGENET_COLOR_MEAN = (0.485, 0.456, 0.406)
r"""ImageNet color normalization mean in RGB format (values in 0-1)."""
IMAGENET_COLOR_STD = (0.229, 0.224, 0.225)
r"""ImageNet color normalization std in RGB format (values in 0-1)."""
DEFAULT_IMAGE_TRANSFORM = alb.Compose(
[
alb.SmallestMaxSize(256, p=1.0),
CenterSquareCrop(224, p=1.0),
alb.Normalize(mean=IMAGENET_COLOR_MEAN, std=IMAGENET_COLOR_STD, p=1.0),
]
)
r"""Default transform without any data augmentation (during pretraining)."""
# =============================================================================
|