Spaces:
Runtime error
Runtime error
File size: 7,993 Bytes
880233f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import copy
import os
import random
import urllib.request
import numpy as np
import torch
import torch.nn.functional as FF
import torch.optim
from torchvision import utils
from tqdm import tqdm
from stylegan2.model import Generator
class DownloadProgressBar(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n)
def get_path(base_path):
BASE_DIR = os.path.join('checkpoints')
save_path = os.path.join(BASE_DIR, base_path)
if not os.path.exists(save_path):
url = f"https://huggingface.co/aaronb/StyleGAN2/resolve/main/{base_path}"
print(f'{base_path} not found')
print('Try to download from huggingface: ', url)
os.makedirs(os.path.dirname(save_path), exist_ok=True)
download_url(url, save_path)
print('Downloaded to ', save_path)
return save_path
def download_url(url, output_path):
with DownloadProgressBar(unit='B', unit_scale=True,
miniters=1, desc=url.split('/')[-1]) as t:
urllib.request.urlretrieve(url, filename=output_path, reporthook=t.update_to)
class CustomGenerator(Generator):
def prepare(
self,
styles,
inject_index=None,
truncation=1,
truncation_latent=None,
input_is_latent=False,
noise=None,
randomize_noise=True,
):
if not input_is_latent:
styles = [self.style(s) for s in styles]
if noise is None:
if randomize_noise:
noise = [None] * self.num_layers
else:
noise = [
getattr(self.noises, f"noise_{i}") for i in range(self.num_layers)
]
if truncation < 1:
style_t = []
for style in styles:
style_t.append(
truncation_latent + truncation * (style - truncation_latent)
)
styles = style_t
if len(styles) < 2:
inject_index = self.n_latent
if styles[0].ndim < 3:
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
else:
latent = styles[0]
else:
if inject_index is None:
inject_index = random.randint(1, self.n_latent - 1)
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
latent2 = styles[1].unsqueeze(1).repeat(1, self.n_latent - inject_index, 1)
latent = torch.cat([latent, latent2], 1)
return latent, noise
def generate(
self,
latent,
noise,
):
out = self.input(latent)
out = self.conv1(out, latent[:, 0], noise=noise[0])
skip = self.to_rgb1(out, latent[:, 1])
i = 1
for conv1, conv2, noise1, noise2, to_rgb in zip(
self.convs[::2], self.convs[1::2], noise[1::2], noise[2::2], self.to_rgbs
):
out = conv1(out, latent[:, i], noise=noise1)
out = conv2(out, latent[:, i + 1], noise=noise2)
skip = to_rgb(out, latent[:, i + 2], skip)
if out.shape[-1] == 256: F = out
i += 2
image = skip
F = FF.interpolate(F, image.shape[-2:], mode='bilinear')
return image, F
def stylegan2(
size=1024,
channel_multiplier=2,
latent=512,
n_mlp=8,
ckpt='stylegan2-ffhq-config-f.pt'
):
g_ema = CustomGenerator(size, latent, n_mlp, channel_multiplier=channel_multiplier)
checkpoint = torch.load(get_path(ckpt))
g_ema.load_state_dict(checkpoint["g_ema"], strict=False)
g_ema.requires_grad_(False)
g_ema.eval()
return g_ema
def bilinear_interpolate_torch(im, y, x):
"""
im : B,C,H,W
y : 1,numPoints -- pixel location y float
x : 1,numPOints -- pixel location y float
"""
x0 = torch.floor(x).long()
x1 = x0 + 1
y0 = torch.floor(y).long()
y1 = y0 + 1
wa = (x1.float() - x) * (y1.float() - y)
wb = (x1.float() - x) * (y - y0.float())
wc = (x - x0.float()) * (y1.float() - y)
wd = (x - x0.float()) * (y - y0.float())
# Instead of clamp
x1 = x1 - torch.floor(x1 / im.shape[3]).int()
y1 = y1 - torch.floor(y1 / im.shape[2]).int()
Ia = im[:, :, y0, x0]
Ib = im[:, :, y1, x0]
Ic = im[:, :, y0, x1]
Id = im[:, :, y1, x1]
return Ia * wa + Ib * wb + Ic * wc + Id * wd
def drag_gan(g_ema, latent: torch.Tensor, noise, F, handle_points, target_points, mask, max_iters=1000):
handle_points0 = copy.deepcopy(handle_points)
n = len(handle_points)
r1, r2, lam, d = 3, 12, 20, 1
def neighbor(x, y, d):
points = []
for i in range(x - d, x + d):
for j in range(y - d, y + d):
points.append(torch.tensor([i, j]).float().cuda())
return points
F0 = F.detach().clone()
# latent = latent.detach().clone().requires_grad_(True)
latent_trainable = latent[:, :6, :].detach().clone().requires_grad_(True)
latent_untrainable = latent[:, 6:, :].detach().clone().requires_grad_(False)
optimizer = torch.optim.Adam([latent_trainable], lr=2e-3)
for iter in range(max_iters):
for s in range(1):
optimizer.zero_grad()
latent = torch.cat([latent_trainable, latent_untrainable], dim=1)
sample2, F2 = g_ema.generate(latent, noise)
# motion supervision
loss = 0
for i in range(n):
pi, ti = handle_points[i], target_points[i]
di = (ti - pi) / torch.sum((ti - pi)**2)
for qi in neighbor(int(pi[0]), int(pi[1]), r1):
# f1 = F[..., int(qi[0]), int(qi[1])]
# f2 = F2[..., int(qi[0] + di[0]), int(qi[1] + di[1])]
f1 = bilinear_interpolate_torch(F2, qi[0], qi[1]).detach()
f2 = bilinear_interpolate_torch(F2, qi[0] + di[0], qi[1] + di[1])
loss += FF.l1_loss(f2, f1)
# loss += ((F-F0) * (1-mask)).abs().mean() * lam
loss.backward()
optimizer.step()
print(latent_trainable[0, 0, :10])
# if s % 10 ==0:
# utils.save_image(sample2, "test2.png", normalize=True, range=(-1, 1))
# point tracking
with torch.no_grad():
sample2, F2 = g_ema.generate(latent, noise)
for i in range(n):
pi = handle_points0[i]
# f = F0[..., int(pi[0]), int(pi[1])]
f0 = bilinear_interpolate_torch(F0, pi[0], pi[1])
minv = 1e9
minx = 1e9
miny = 1e9
for qi in neighbor(int(handle_points[i][0]), int(handle_points[i][1]), r2):
# f2 = F2[..., int(qi[0]), int(qi[1])]
try:
f2 = bilinear_interpolate_torch(F2, qi[0], qi[1])
except:
import ipdb
ipdb.set_trace()
v = torch.norm(f2 - f0, p=1)
if v < minv:
minv = v
minx = int(qi[0])
miny = int(qi[1])
handle_points[i][0] = minx
handle_points[i][1] = miny
F = F2.detach().clone()
if iter % 1 == 0:
print(iter, loss.item(), handle_points, target_points)
# p = handle_points[0].int()
# sample2[0, :, p[0] - 5:p[0] + 5, p[1] - 5:p[1] + 5] = sample2[0, :, p[0] - 5:p[0] + 5, p[1] - 5:p[1] + 5] * 0
# t = target_points[0].int()
# sample2[0, :, t[0] - 5:t[0] + 5, t[1] - 5:t[1] + 5] = sample2[0, :, t[0] - 5:t[0] + 5, t[1] - 5:t[1] + 5] * 255
# sample2[0, :, 210, 134] = sample2[0, :, 210, 134] * 0
utils.save_image(sample2, "test2.png", normalize=True, range=(-1, 1))
yield sample2, latent, F2
|