Spaces:
Running
on
Zero
Running
on
Zero
test_pr_1
#1
by
aatu18
- opened
- app.py +257 -19
- old_app.py +109 -0
app.py
CHANGED
@@ -1,23 +1,24 @@
|
|
1 |
import os
|
2 |
-
|
3 |
-
import json
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
import spaces
|
7 |
import torch
|
8 |
from methods import gdc_api_calls, utilities
|
9 |
-
from gdc_pipeline import execute_pipeline, setup_args, setup_models_and_data
|
10 |
from transformers import AutoTokenizer, BertTokenizer, AutoModelForCausalLM, BertForSequenceClassification
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
|
|
|
13 |
working_llama_token = os.environ.get("let_this_please_work", False)
|
14 |
hf_TOKEN = os.environ.get("fineTest", False)
|
15 |
intent_token = os.environ.get("query_intent_test", False)
|
16 |
|
17 |
-
|
18 |
-
# setup models and data
|
19 |
-
# qag_requirements = setup_models_and_data(hf_TOKEN, working_llama_token, intent_token)
|
20 |
-
|
21 |
print("getting gdc project information")
|
22 |
project_mappings = gdc_api_calls.get_gdc_project_ids(start=0, stop=86)
|
23 |
|
@@ -50,26 +51,262 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
50 |
model = model.to('cuda').eval()
|
51 |
|
52 |
|
53 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
try:
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
61 |
gdc_genes_mutations,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
model,
|
63 |
tok,
|
64 |
-
|
65 |
-
intent_tok,
|
66 |
project_mappings,
|
67 |
-
|
|
|
68 |
)
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
return result
|
72 |
|
|
|
|
|
73 |
def visible_component(input_text):
|
74 |
return gr.update(value="WHATEVER")
|
75 |
|
@@ -100,10 +337,11 @@ with gr.Blocks(title="GDC QAG MCP server") as GDC_QAG_QUERY:
|
|
100 |
)
|
101 |
|
102 |
search_button.click(
|
103 |
-
fn=
|
104 |
inputs=[query_input],
|
105 |
outputs=output,
|
106 |
)
|
107 |
|
|
|
108 |
if __name__ == "__main__":
|
109 |
GDC_QAG_QUERY.launch(mcp_server=True, show_api=True)
|
|
|
1 |
import os
|
2 |
+
from types import SimpleNamespace
|
|
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import spaces
|
6 |
import torch
|
7 |
from methods import gdc_api_calls, utilities
|
|
|
8 |
from transformers import AutoTokenizer, BertTokenizer, AutoModelForCausalLM, BertForSequenceClassification
|
9 |
+
from guidance import gen as guidance_gen
|
10 |
+
from guidance.models import Transformers
|
11 |
+
from transformers import set_seed
|
12 |
+
|
13 |
+
from methods import gdc_api_calls, utilities
|
14 |
|
15 |
|
16 |
+
# set up various tokens
|
17 |
working_llama_token = os.environ.get("let_this_please_work", False)
|
18 |
hf_TOKEN = os.environ.get("fineTest", False)
|
19 |
intent_token = os.environ.get("query_intent_test", False)
|
20 |
|
21 |
+
# set up requirements: models and data
|
|
|
|
|
|
|
22 |
print("getting gdc project information")
|
23 |
project_mappings = gdc_api_calls.get_gdc_project_ids(start=0, stop=86)
|
24 |
|
|
|
51 |
model = model.to('cuda').eval()
|
52 |
|
53 |
|
54 |
+
# execute_api_call
|
55 |
+
def execute_api_call(
|
56 |
+
intent,
|
57 |
+
gene_entities,
|
58 |
+
mutation_entities,
|
59 |
+
cancer_entities,
|
60 |
+
query,
|
61 |
+
gdc_genes_mutations,
|
62 |
+
project_mappings,
|
63 |
+
):
|
64 |
+
if intent == "ssm_frequency":
|
65 |
+
result, cancer_entities = utilities.get_ssm_frequency(
|
66 |
+
gene_entities, mutation_entities, cancer_entities, project_mappings
|
67 |
+
)
|
68 |
+
elif intent == "top_mutated_genes_by_project":
|
69 |
+
result = gdc_api_calls.get_top_mutated_genes_by_project(
|
70 |
+
cancer_entities, top_k=10
|
71 |
+
)
|
72 |
+
elif intent == "most_frequently_mutated_gene":
|
73 |
+
result = gdc_api_calls.get_top_mutated_genes_by_project(
|
74 |
+
cancer_entities, top_k=1
|
75 |
+
)
|
76 |
+
elif intent == "freq_cnv_loss_or_gain":
|
77 |
+
result, cancer_entities = gdc_api_calls.get_freq_cnv_loss_or_gain(
|
78 |
+
gene_entities, cancer_entities, query, cnv_and_ssm_flag=False
|
79 |
+
)
|
80 |
+
elif intent == "msi_h_frequency":
|
81 |
+
result, cancer_entities = gdc_api_calls.get_msi_frequency(cancer_entities)
|
82 |
+
elif intent == "cnv_and_ssm":
|
83 |
+
result, cancer_entities = utilities.get_freq_of_cnv_and_ssms(
|
84 |
+
query, cancer_entities, gene_entities, gdc_genes_mutations
|
85 |
+
)
|
86 |
+
elif intent == "top_cases_counts_by_gene":
|
87 |
+
result, cancer_entities = gdc_api_calls.get_top_cases_counts_by_gene(
|
88 |
+
gene_entities, cancer_entities
|
89 |
+
)
|
90 |
+
elif intent == "project_summary":
|
91 |
+
result = gdc_api_calls.get_project_summary(cancer_entities)
|
92 |
+
else:
|
93 |
+
result = "user intent not recognized, or use case not covered"
|
94 |
+
return result, cancer_entities
|
95 |
+
|
96 |
+
|
97 |
+
# function to combine entities, intent and API call
|
98 |
+
def construct_and_execute_api_call(
|
99 |
+
query, gdc_genes_mutations, project_mappings, intent_model, intent_tok
|
100 |
+
):
|
101 |
+
print("query:\n{}\n".format(query))
|
102 |
+
# Infer entities
|
103 |
+
initial_cancer_entities = utilities.return_initial_cancer_entities(
|
104 |
+
query, model="en_ner_bc5cdr_md"
|
105 |
+
)
|
106 |
|
107 |
+
if not initial_cancer_entities:
|
108 |
+
try:
|
109 |
+
initial_cancer_entities = utilities.return_initial_cancer_entities(
|
110 |
+
query, model="en_core_sci_md"
|
111 |
+
)
|
112 |
+
except Exception as e:
|
113 |
+
print("unable to guess cancer entities {}".format(str(e)))
|
114 |
+
initial_cancer_entities = []
|
115 |
+
|
116 |
+
cancer_entities = utilities.postprocess_cancer_entities(
|
117 |
+
project_mappings, initial_cancer_entities=initial_cancer_entities, query=query
|
118 |
+
)
|
119 |
+
|
120 |
+
# if cancer entities is empty from above methods return all projects
|
121 |
+
if not cancer_entities:
|
122 |
+
cancer_entities = list(project_mappings.keys())
|
123 |
+
gene_entities = utilities.infer_gene_entities_from_query(query, gdc_genes_mutations)
|
124 |
+
mutation_entities = utilities.infer_mutation_entities(
|
125 |
+
gene_entities=gene_entities,
|
126 |
+
query=query,
|
127 |
+
gdc_genes_mutations=gdc_genes_mutations,
|
128 |
+
)
|
129 |
+
|
130 |
+
print("gene entities {}".format(gene_entities))
|
131 |
+
print("mutation entities {}".format(mutation_entities))
|
132 |
+
print("cancer entities {}".format(cancer_entities))
|
133 |
+
|
134 |
+
# infer user intent
|
135 |
+
intent = utilities.infer_user_intent(query, intent_model, intent_tok)
|
136 |
+
print("user intent:\n{}\n".format(intent))
|
137 |
try:
|
138 |
+
api_call_result, cancer_entities = execute_api_call(
|
139 |
+
intent,
|
140 |
+
gene_entities,
|
141 |
+
mutation_entities,
|
142 |
+
cancer_entities,
|
143 |
+
query,
|
144 |
gdc_genes_mutations,
|
145 |
+
project_mappings,
|
146 |
+
)
|
147 |
+
print("api_call_result {}".format(api_call_result))
|
148 |
+
except Exception as e:
|
149 |
+
print("unable to process query {} {}".format(query, str(e)))
|
150 |
+
api_call_result = []
|
151 |
+
cancer_entities = []
|
152 |
+
return SimpleNamespace(
|
153 |
+
helper_output=api_call_result,
|
154 |
+
cancer_entities=cancer_entities,
|
155 |
+
intent=intent,
|
156 |
+
gene_entities=gene_entities,
|
157 |
+
mutation_entities=mutation_entities,
|
158 |
+
)
|
159 |
+
|
160 |
+
|
161 |
+
# generate llama model response
|
162 |
+
@spaces.GPU(duration=30)
|
163 |
+
def generate_response(modified_query, model, tok):
|
164 |
+
set_seed(1042)
|
165 |
+
regex = "The final answer is: \d*\.\d*%"
|
166 |
+
lm = Transformers(model=model, tokenizer=tok)
|
167 |
+
lm += modified_query
|
168 |
+
print(f"lm: {lm}")
|
169 |
+
lm += guidance_gen(
|
170 |
+
"gen_response",
|
171 |
+
n=1,
|
172 |
+
temperature=0,
|
173 |
+
max_tokens=1000,
|
174 |
+
regex=regex
|
175 |
+
)
|
176 |
+
print(f"lm with response: {lm}")
|
177 |
+
return lm["gen_response"]
|
178 |
+
|
179 |
+
|
180 |
+
def batch_test(
|
181 |
+
query,
|
182 |
+
model,
|
183 |
+
tok,
|
184 |
+
gdc_genes_mutations,
|
185 |
+
project_mappings,
|
186 |
+
intent_model,
|
187 |
+
intent_tok
|
188 |
+
):
|
189 |
+
modified_query = utilities.construct_modified_query_base_llm(query)
|
190 |
+
print(f"modified_query is: {modified_query}")
|
191 |
+
llama_base_output = generate_response(modified_query, model, tok)
|
192 |
+
print(f"llama_base_output: {llama_base_output}")
|
193 |
+
try:
|
194 |
+
result = construct_and_execute_api_call(
|
195 |
+
query, gdc_genes_mutations, project_mappings, intent_model, intent_tok
|
196 |
+
)
|
197 |
+
except Exception as e:
|
198 |
+
# unable to compute at this time, recheck
|
199 |
+
result.helper_output = []
|
200 |
+
result.cancer_entities = []
|
201 |
+
# if there is not a helper output for each unique cancer entity
|
202 |
+
# log error to inspect and reprocess query later
|
203 |
+
try:
|
204 |
+
len(result.helper_output) == len(result.cancer_entities)
|
205 |
+
except Exception as e:
|
206 |
+
msg = "there is not a unique helper output for each unique \
|
207 |
+
cancer entity in {}".format(
|
208 |
+
query
|
209 |
+
)
|
210 |
+
print("exception {}".format(msg))
|
211 |
+
result.helper_output = []
|
212 |
+
result.cancer_entities = []
|
213 |
+
|
214 |
+
return pd.Series(
|
215 |
+
[
|
216 |
+
llama_base_output,
|
217 |
+
result.helper_output,
|
218 |
+
result.cancer_entities,
|
219 |
+
result.intent,
|
220 |
+
result.gene_entities,
|
221 |
+
result.mutation_entities,
|
222 |
+
]
|
223 |
+
)
|
224 |
+
|
225 |
+
|
226 |
+
def get_prefinal_response(row, model, tok):
|
227 |
+
try:
|
228 |
+
query = row["questions"]
|
229 |
+
helper_output = row["helper_output"]
|
230 |
+
except Exception as e:
|
231 |
+
print(f"unable to retrieve query: {query} or helper_output: {helper_output}")
|
232 |
+
modified_query = utilities.construct_modified_query(query, helper_output)
|
233 |
+
prefinal_llama_with_helper_output = generate_response(modified_query, model, tok)
|
234 |
+
return pd.Series([modified_query, prefinal_llama_with_helper_output])
|
235 |
+
|
236 |
+
|
237 |
+
|
238 |
+
def execute_pipeline(question: str):
|
239 |
+
df = pd.DataFrame({'questions' : [question]})
|
240 |
+
print(f'Question received: {question}')
|
241 |
+
print("starting pipeline")
|
242 |
+
print("CUDA available:", torch.cuda.is_available())
|
243 |
+
print("CUDA device name:", torch.cuda.get_device_name(0))
|
244 |
+
|
245 |
+
# queries input file
|
246 |
+
print(f"running test on input {df}")
|
247 |
+
df[
|
248 |
+
[
|
249 |
+
"llama_base_output",
|
250 |
+
"helper_output",
|
251 |
+
"cancer_entities",
|
252 |
+
"intent",
|
253 |
+
"gene_entities",
|
254 |
+
"mutation_entities",
|
255 |
+
]
|
256 |
+
] = df["questions"].apply(
|
257 |
+
lambda x: batch_test(
|
258 |
+
x,
|
259 |
model,
|
260 |
tok,
|
261 |
+
gdc_genes_mutations,
|
|
|
262 |
project_mappings,
|
263 |
+
intent_model,
|
264 |
+
intent_tok
|
265 |
)
|
266 |
+
)
|
267 |
+
# retain responses with helper output
|
268 |
+
df["len_helper"] = df["helper_output"].apply(lambda x: len(x))
|
269 |
+
df_filtered = df[df["len_helper"] != 0]
|
270 |
+
df_filtered["len_ce"] = df_filtered["cancer_entities"].apply(lambda x: len(x))
|
271 |
+
# retain rows where one response is retrieved for each cancer entity
|
272 |
+
df_filtered["ce_eq_helper"] = df_filtered.apply(
|
273 |
+
lambda x: x["len_ce"] == x["len_helper"], axis=1
|
274 |
+
)
|
275 |
+
df_filtered = df_filtered[df_filtered["ce_eq_helper"]]
|
276 |
+
df_filtered_exploded = df_filtered.explode(
|
277 |
+
["helper_output", "cancer_entities"], ignore_index=True
|
278 |
+
)
|
279 |
+
df_filtered_exploded[["modified_prompt", "pre_final_llama_with_helper_output"]] = (
|
280 |
+
df_filtered_exploded.apply(
|
281 |
+
lambda x: get_prefinal_response(x, model, tok), axis=1
|
282 |
+
)
|
283 |
+
)
|
284 |
+
### postprocess response
|
285 |
+
print("postprocessing response")
|
286 |
+
df_filtered_exploded[
|
287 |
+
[
|
288 |
+
"llama_base_stat",
|
289 |
+
"delta_llama",
|
290 |
+
"value_changed",
|
291 |
+
"ground_truth_stat",
|
292 |
+
"generated_stat_prefinal",
|
293 |
+
"delta_prefinal",
|
294 |
+
"generated_stat_final",
|
295 |
+
"delta_final",
|
296 |
+
"final_response",
|
297 |
+
]
|
298 |
+
] = df_filtered_exploded.apply(
|
299 |
+
lambda x: utilities.postprocess_response(x), axis=1
|
300 |
+
)
|
301 |
+
|
302 |
+
final_columns = utilities.get_final_columns()
|
303 |
+
result = df_filtered_exploded[final_columns].T
|
304 |
+
print('result {}'.format(result))
|
305 |
+
print('completed')
|
306 |
return result
|
307 |
|
308 |
+
|
309 |
+
|
310 |
def visible_component(input_text):
|
311 |
return gr.update(value="WHATEVER")
|
312 |
|
|
|
337 |
)
|
338 |
|
339 |
search_button.click(
|
340 |
+
fn=execute_pipeline,
|
341 |
inputs=[query_input],
|
342 |
outputs=output,
|
343 |
)
|
344 |
|
345 |
+
|
346 |
if __name__ == "__main__":
|
347 |
GDC_QAG_QUERY.launch(mcp_server=True, show_api=True)
|
old_app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import json
|
4 |
+
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
from methods import gdc_api_calls, utilities
|
9 |
+
from gdc_pipeline import execute_pipeline, setup_args, setup_models_and_data
|
10 |
+
from transformers import AutoTokenizer, BertTokenizer, AutoModelForCausalLM, BertForSequenceClassification
|
11 |
+
|
12 |
+
|
13 |
+
working_llama_token = os.environ.get("let_this_please_work", False)
|
14 |
+
hf_TOKEN = os.environ.get("fineTest", False)
|
15 |
+
intent_token = os.environ.get("query_intent_test", False)
|
16 |
+
|
17 |
+
|
18 |
+
# setup models and data
|
19 |
+
# qag_requirements = setup_models_and_data(hf_TOKEN, working_llama_token, intent_token)
|
20 |
+
|
21 |
+
print("getting gdc project information")
|
22 |
+
project_mappings = gdc_api_calls.get_gdc_project_ids(start=0, stop=86)
|
23 |
+
|
24 |
+
print('loading intent model')
|
25 |
+
model_id = 'uc-ctds/query_intent'
|
26 |
+
intent_tok = AutoTokenizer.from_pretrained(
|
27 |
+
model_id, trust_remote_code=True,
|
28 |
+
token=intent_token
|
29 |
+
)
|
30 |
+
intent_model = BertForSequenceClassification.from_pretrained(
|
31 |
+
model_id, token=intent_token)
|
32 |
+
intent_model = intent_model.to('cuda').eval()
|
33 |
+
|
34 |
+
|
35 |
+
print("loading gdc genes and mutations")
|
36 |
+
gdc_genes_mutations = utilities.load_gdc_genes_mutations_hf(hf_TOKEN)
|
37 |
+
|
38 |
+
print("loading llama-3B model")
|
39 |
+
model_id = "meta-llama/Llama-3.2-3B-Instruct"
|
40 |
+
tok = AutoTokenizer.from_pretrained(
|
41 |
+
model_id, trust_remote_code=True,
|
42 |
+
token=working_llama_token
|
43 |
+
)
|
44 |
+
model = AutoModelForCausalLM.from_pretrained(
|
45 |
+
model_id,
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
trust_remote_code=True,
|
48 |
+
token=working_llama_token
|
49 |
+
)
|
50 |
+
model = model.to('cuda').eval()
|
51 |
+
|
52 |
+
|
53 |
+
# question = 'What is the co-occurence frequency of somatic homozygous deletions in CDKN2A and CDKN2B in the mesothelioma project TCGA-MESO in the genomic data commons?'
|
54 |
+
|
55 |
+
def wrapped_execute_pipeline(question: str):
|
56 |
+
df = pd.DataFrame({'questions' : [question]})
|
57 |
+
print(f'Question received: {question}')
|
58 |
+
try:
|
59 |
+
result = execute_pipeline(
|
60 |
+
df,
|
61 |
+
gdc_genes_mutations,
|
62 |
+
model,
|
63 |
+
tok,
|
64 |
+
intent_model,
|
65 |
+
intent_tok,
|
66 |
+
project_mappings,
|
67 |
+
output_file_prefix=None
|
68 |
+
)
|
69 |
+
except Exception as e:
|
70 |
+
result = f'Unable to execute GDC API, can you please retry with a template question? Error: {e}'
|
71 |
+
return result
|
72 |
+
|
73 |
+
def visible_component(input_text):
|
74 |
+
return gr.update(value="WHATEVER")
|
75 |
+
|
76 |
+
|
77 |
+
# Create Gradio interface
|
78 |
+
with gr.Blocks(title="GDC QAG MCP server") as GDC_QAG_QUERY:
|
79 |
+
gr.Markdown(
|
80 |
+
"""
|
81 |
+
# GDC QAG Service
|
82 |
+
"""
|
83 |
+
)
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
query_input = gr.Textbox(
|
87 |
+
lines = 3,
|
88 |
+
label="Search Query",
|
89 |
+
placeholder='e.g. "What is the co-occurence frequency of somatic homozygous deletions in CDKN2A and CDKN2B in the mesothelioma project TCGA-MESO in the genomic data commons?"',
|
90 |
+
info="Required: Enter your search query",
|
91 |
+
)
|
92 |
+
|
93 |
+
search_button = gr.Button("Search", variant="primary")
|
94 |
+
|
95 |
+
output = gr.Textbox(
|
96 |
+
label="Query Result",
|
97 |
+
lines=10,
|
98 |
+
max_lines=25,
|
99 |
+
info="The Result of the Query will appear here",
|
100 |
+
)
|
101 |
+
|
102 |
+
search_button.click(
|
103 |
+
fn=wrapped_execute_pipeline,
|
104 |
+
inputs=[query_input],
|
105 |
+
outputs=output,
|
106 |
+
)
|
107 |
+
|
108 |
+
if __name__ == "__main__":
|
109 |
+
GDC_QAG_QUERY.launch(mcp_server=True, show_api=True)
|