Spaces:
Build error
Build error
File size: 5,996 Bytes
590af54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
import hydra
import torch
import os
import re
import pyrootutils
from PIL import Image
from omegaconf import OmegaConf
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler, Transformer2DModel
from any_res import process_anyres_image
pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
BOI_TOKEN = '<img>'
BOP_TOKEN = '<patch>'
EOI_TOKEN = '</img>'
EOP_TOKEN = '</patch>'
IMG_TOKEN = '<img_{:05d}>'
resolution_grids = ['1x1']
base_resolution = 448
device = 'cuda:0'
device1 = 'cuda:1'
dtype = torch.float16
dtype_str = 'fp16'
num_img_in_tokens = 64
num_img_out_tokens = 64
instruction_prompt = '[INST] {instruction} [/INST]\n'
save_dir = 'vis'
os.makedirs(save_dir, exist_ok=True)
tokenizer_cfg_path = 'configs/tokenizer/clm_llama_tokenizer_224loc_anyres.yaml'
image_transform_cfg_path = 'configs/processer/qwen_448_transform.yaml'
visual_encoder_cfg_path = 'configs/visual_encoder/qwen_vitg_448.yaml'
llm_cfg_path = 'configs/clm_models/llm_seed_x_edit.yaml'
agent_cfg_path = 'configs/clm_models/agent_seed_x_edit.yaml'
adapter_cfg_path = 'configs/sdxl_adapter/sdxl_qwen_vit_resampler_l4_q64_full_with_latent_image_pretrain_no_normalize.yaml'
discrete_model_cfg_path = 'configs/discrete_model/discrete_identity.yaml'
diffusion_model_path = 'pretrained/stable-diffusion-xl-base-1.0'
tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path)
tokenizer = hydra.utils.instantiate(tokenizer_cfg)
image_transform_cfg = OmegaConf.load(image_transform_cfg_path)
image_transform = hydra.utils.instantiate(image_transform_cfg)
visual_encoder_cfg = OmegaConf.load(visual_encoder_cfg_path)
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
visual_encoder.eval().to(device1, dtype=dtype)
print('Init visual encoder done')
llm_cfg = OmegaConf.load(llm_cfg_path)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=dtype)
print('Init llm done.')
agent_model_cfg = OmegaConf.load(agent_cfg_path)
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm)
agent_model.eval().to(device, dtype=dtype)
print('Init agent mdoel Done')
noise_scheduler = EulerDiscreteScheduler.from_pretrained(diffusion_model_path, subfolder="scheduler")
print('init vae')
vae = AutoencoderKL.from_pretrained(diffusion_model_path, subfolder="vae").to(device1, dtype=dtype)
print('init unet')
unet = UNet2DConditionModel.from_pretrained(diffusion_model_path, subfolder="unet").to(device1, dtype=dtype)
adapter_cfg = OmegaConf.load(adapter_cfg_path)
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet).to(device1, dtype=dtype).eval()
discrete_model_cfg = OmegaConf.load(discrete_model_cfg_path)
discrete_model = hydra.utils.instantiate(discrete_model_cfg).to(device1).eval()
print('Init adapter done')
adapter.init_pipe(vae=vae,
scheduler=noise_scheduler,
visual_encoder=visual_encoder,
image_transform=image_transform,
dtype=dtype,
device=device1)
print('Init adapter pipe done')
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
bop_token_id = tokenizer.encode(BOP_TOKEN, add_special_tokens=False)[0]
eop_token_id = tokenizer.encode(EOP_TOKEN, add_special_tokens=False)[0]
grid_pinpoints = []
for scale in resolution_grids:
s1, s2 = scale.split('x')
grid_pinpoints.append([int(s1)*base_resolution, int(s2)*base_resolution])
grid_pinpoints = grid_pinpoints
image_path = 'demo_images/car.jpg'
instruction = 'Make it under the sunset'
image = Image.open(image_path).convert('RGB')
source_image = image.resize((1024, 1024))
image_tensor, patch_pos_tensor = process_anyres_image(image, image_transform, grid_pinpoints, base_resolution)
embeds_cmp_mask = torch.tensor([True]*image_tensor.shape[0]).to(device, dtype=torch.bool)
patch_pos = [patch_pos_tensor]
patch_position = torch.cat(patch_pos, dim=0)
image_tensor = image_tensor.to(device1, dtype=dtype)
patch_length = image_tensor.shape[0]
image_tokens = ''
for _ in range(patch_length-1):
image_tokens += BOP_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOP_TOKEN
image_tokens += BOI_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOI_TOKEN
prompt = instruction_prompt.format_map({'instruction': image_tokens + instruction})
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
input_ids = [tokenizer.bos_token_id] + input_ids
input_ids = torch.tensor(input_ids).to(device, dtype=torch.long)
ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool)
boi_indices = torch.where(torch.logical_or(input_ids == boi_token_id, input_ids == bop_token_id))[0].tolist()
eoi_indices = torch.where(torch.logical_or(input_ids == eoi_token_id, input_ids == eop_token_id))[0].tolist()
for boi_idx, eoi_idx in zip(boi_indices, eoi_indices):
ids_cmp_mask[boi_idx + 1:eoi_idx] = True
input_ids = input_ids.unsqueeze(0)
ids_cmp_mask = ids_cmp_mask.unsqueeze(0)
with torch.no_grad():
image_embeds = visual_encoder(image_tensor)
image_embeds = image_embeds.to(device)
output = agent_model.generate(tokenizer=tokenizer,
input_ids=input_ids,
image_embeds=image_embeds,
embeds_cmp_mask=embeds_cmp_mask,
patch_positions=patch_position,
ids_cmp_mask=ids_cmp_mask,
max_new_tokens=512,
num_img_gen_tokens=num_img_out_tokens)
text = re.sub('<[^>]*>', '', output['text'])
print(text)
if output['has_img_output']:
images = adapter.generate(image_embeds=output['img_gen_feat'].to(device1), latent_image=source_image, num_inference_steps=50)
save_path = os.path.join(save_dir, str(len(os.listdir(save_dir))) + '_' + instruction + '.jpg')
images[0].save(save_path)
torch.cuda.empty_cache()
|