File size: 5,996 Bytes
590af54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import hydra
import torch
import os
import re
import pyrootutils
from PIL import Image
from omegaconf import OmegaConf
from diffusers import AutoencoderKL, UNet2DConditionModel, EulerDiscreteScheduler, Transformer2DModel
from any_res import process_anyres_image

pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)

BOI_TOKEN = '<img>'
BOP_TOKEN = '<patch>'
EOI_TOKEN = '</img>'
EOP_TOKEN = '</patch>'
IMG_TOKEN = '<img_{:05d}>'

resolution_grids = ['1x1']
base_resolution = 448

device = 'cuda:0'
device1 = 'cuda:1'
dtype = torch.float16
dtype_str = 'fp16'
num_img_in_tokens = 64
num_img_out_tokens = 64
instruction_prompt = '[INST] {instruction} [/INST]\n'

save_dir = 'vis'
os.makedirs(save_dir, exist_ok=True)

tokenizer_cfg_path = 'configs/tokenizer/clm_llama_tokenizer_224loc_anyres.yaml'
image_transform_cfg_path = 'configs/processer/qwen_448_transform.yaml'
visual_encoder_cfg_path = 'configs/visual_encoder/qwen_vitg_448.yaml'
llm_cfg_path = 'configs/clm_models/llm_seed_x_edit.yaml'
agent_cfg_path = 'configs/clm_models/agent_seed_x_edit.yaml'
adapter_cfg_path = 'configs/sdxl_adapter/sdxl_qwen_vit_resampler_l4_q64_full_with_latent_image_pretrain_no_normalize.yaml'
discrete_model_cfg_path = 'configs/discrete_model/discrete_identity.yaml'

diffusion_model_path = 'pretrained/stable-diffusion-xl-base-1.0'

tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path)
tokenizer = hydra.utils.instantiate(tokenizer_cfg)

image_transform_cfg = OmegaConf.load(image_transform_cfg_path)
image_transform = hydra.utils.instantiate(image_transform_cfg)

visual_encoder_cfg = OmegaConf.load(visual_encoder_cfg_path)
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
visual_encoder.eval().to(device1, dtype=dtype)
print('Init visual encoder done')

llm_cfg = OmegaConf.load(llm_cfg_path)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=dtype)
print('Init llm done.')

agent_model_cfg = OmegaConf.load(agent_cfg_path)
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm)

agent_model.eval().to(device, dtype=dtype)
print('Init agent mdoel Done')

noise_scheduler = EulerDiscreteScheduler.from_pretrained(diffusion_model_path, subfolder="scheduler")
print('init vae')
vae = AutoencoderKL.from_pretrained(diffusion_model_path, subfolder="vae").to(device1, dtype=dtype)
print('init unet')
unet = UNet2DConditionModel.from_pretrained(diffusion_model_path, subfolder="unet").to(device1, dtype=dtype)

adapter_cfg = OmegaConf.load(adapter_cfg_path)
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet).to(device1, dtype=dtype).eval()

discrete_model_cfg = OmegaConf.load(discrete_model_cfg_path)
discrete_model = hydra.utils.instantiate(discrete_model_cfg).to(device1).eval()
print('Init adapter done')

adapter.init_pipe(vae=vae,
                scheduler=noise_scheduler,
                visual_encoder=visual_encoder,
                image_transform=image_transform,
                dtype=dtype,
                device=device1)

print('Init adapter pipe done')
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]

bop_token_id = tokenizer.encode(BOP_TOKEN, add_special_tokens=False)[0]
eop_token_id = tokenizer.encode(EOP_TOKEN, add_special_tokens=False)[0]

grid_pinpoints = []
for scale in resolution_grids:
    s1, s2 = scale.split('x')
    grid_pinpoints.append([int(s1)*base_resolution, int(s2)*base_resolution])
grid_pinpoints = grid_pinpoints


image_path = 'demo_images/car.jpg'
instruction = 'Make it under the sunset'

image = Image.open(image_path).convert('RGB')
source_image = image.resize((1024, 1024))

image_tensor, patch_pos_tensor = process_anyres_image(image, image_transform, grid_pinpoints, base_resolution)
embeds_cmp_mask = torch.tensor([True]*image_tensor.shape[0]).to(device, dtype=torch.bool)

patch_pos = [patch_pos_tensor]
patch_position = torch.cat(patch_pos, dim=0)

image_tensor = image_tensor.to(device1, dtype=dtype)

patch_length = image_tensor.shape[0]
image_tokens = ''
for _ in range(patch_length-1):
    image_tokens +=  BOP_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOP_TOKEN
image_tokens += BOI_TOKEN + ''.join(IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)) + EOI_TOKEN

prompt = instruction_prompt.format_map({'instruction': image_tokens + instruction})

input_ids = tokenizer.encode(prompt, add_special_tokens=False)
input_ids = [tokenizer.bos_token_id] + input_ids

input_ids = torch.tensor(input_ids).to(device, dtype=torch.long)

ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool)

boi_indices = torch.where(torch.logical_or(input_ids == boi_token_id, input_ids == bop_token_id))[0].tolist()
eoi_indices = torch.where(torch.logical_or(input_ids == eoi_token_id, input_ids == eop_token_id))[0].tolist()

for boi_idx, eoi_idx in zip(boi_indices, eoi_indices):
    ids_cmp_mask[boi_idx + 1:eoi_idx] = True

input_ids = input_ids.unsqueeze(0)
ids_cmp_mask = ids_cmp_mask.unsqueeze(0)

with torch.no_grad():
    image_embeds = visual_encoder(image_tensor)
    image_embeds = image_embeds.to(device)
    output = agent_model.generate(tokenizer=tokenizer,
                                input_ids=input_ids,
                                image_embeds=image_embeds,
                                embeds_cmp_mask=embeds_cmp_mask,
                                patch_positions=patch_position,
                                ids_cmp_mask=ids_cmp_mask,
                                max_new_tokens=512,
                                num_img_gen_tokens=num_img_out_tokens)
text = re.sub('<[^>]*>', '', output['text'])
print(text)

if output['has_img_output']:
    images = adapter.generate(image_embeds=output['img_gen_feat'].to(device1), latent_image=source_image, num_inference_steps=50)

    save_path = os.path.join(save_dir, str(len(os.listdir(save_dir))) + '_' + instruction + '.jpg')
    images[0].save(save_path)
torch.cuda.empty_cache()