File size: 11,871 Bytes
e03a54f
 
e59f801
e03a54f
90c07f0
e03a54f
 
90c07f0
 
e03a54f
 
 
 
ca5e049
e03a54f
90c07f0
e03a54f
 
 
 
 
 
 
 
 
 
 
 
ad01db8
e03a54f
90c07f0
4bc7be5
 
 
 
 
 
 
 
ad01db8
4bc7be5
90c07f0
 
 
 
9c2d40e
e03a54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adc647c
e03a54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e59f801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62bbe51
e59f801
62bbe51
e59f801
e03a54f
 
 
90c07f0
 
 
 
9c2d40e
 
 
 
 
 
90c07f0
 
 
 
 
 
9c2d40e
 
 
 
 
 
90c07f0
 
 
 
 
ad01db8
 
 
 
 
 
 
e03a54f
 
 
 
 
 
4bc7be5
 
e03a54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c07f0
e03a54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c07f0
9c2d40e
90c07f0
 
 
e03a54f
 
 
 
 
 
 
 
27a8f27
 
90c07f0
ad01db8
90c07f0
27a8f27
e03a54f
90c07f0
 
e03a54f
 
90c07f0
e03a54f
90c07f0
 
 
e03a54f
9c2d40e
e03a54f
 
 
4bc7be5
 
 
e03a54f
 
 
 
 
 
 
 
 
4bc7be5
e03a54f
 
 
 
 
 
 
 
 
 
 
 
 
 
026ee6b
e03a54f
 
 
026ee6b
 
 
e03a54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c07f0
ca5e049
 
 
 
90c07f0
 
 
026ee6b
e03a54f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
from pathlib import Path
import json
import os

import gradio as gr
from huggingface_hub import snapshot_download
from gradio_leaderboard import Leaderboard, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from ttsds.benchmarks.benchmark import BenchmarkCategory
from ttsds import BenchmarkSuite

from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, TAGS
from src.texts import LLM_BENCHMARKS_TEXT, EVALUATION_QUEUE_TEXT, CITATION_TEXT
from src.css_html_js import custom_css


def filter_dfs(tags, lb):
    global f_b_df, f_a_df
    is_agg = False
    if "Environment" in lb.columns:
        is_agg = True
    if is_agg:
        lb = f_a_df.copy()
    else:
        lb = f_b_df.copy()
    if tags and len(lb) > 0:
        lb = lb[lb["Tags"].apply(lambda x: any(tag in x for tag in tags))]
    lb = rounded_df(lb)
    return lb

def change_mean(env, lb):
    global f_b_df, f_a_df
    lb = f_a_df.copy()
    if env:
        mean_cols = [col for col in lb.columns if str(col) not in ["Mean", "Environment", "Model", "Tags"]]
    else:
        mean_cols = [col for col in lb.columns if str(col) not in ["Mean", "Model", "Tags"]]
    lb["Mean"] = lb[mean_cols].mean(axis=1)
    lb = rounded_df(lb)
    return lb

def restart_space():
    API.restart_space(repo_id=REPO_ID)


def submit_eval(model_name, model_tags, web_url, hf_url, code_url, paper_url, inference_details, file_path):
    model_id = model_name.lower().replace(" ", "_")
    # check if model already exists
    if Path(f"{EVAL_REQUESTS_PATH}/{model_id}.json").exists():
        return "Model already exists in the evaluation queue"
    # check which urls are valid
    if web_url and not web_url.startswith("http"):
        return "Please enter a valid URL"
    if hf_url and not hf_url.startswith("http"):
        return "Please enter a valid URL"
    if code_url and not code_url.startswith("http"):
        return "Please enter a valid URL"
    if paper_url and not paper_url.startswith("http"):
        return "Please enter a valid URL"
    # move file to correct location
    if not file_path.endswith(".tar.gz"):
        return "Please upload a .tar.gz file"
    Path(file_path).rename(f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz")
    # build display name - use web_url to link text if available, and emojis for the other urls
    display_name = model_name + " "
    if web_url:
        display_name = f"[{display_name}]({web_url}) "
    if hf_url:
        display_name += f"[πŸ€—]({hf_url})"
    if code_url:
        display_name += f"[πŸ’»]({code_url})"
    if paper_url:
        display_name += f"[πŸ“„]({paper_url})"
    request_obj = {
        "model_name": model_name,
        "display_name": display_name,
        "model_tags": model_tags,
        "web_url": web_url,
        "hf_url": hf_url,
        "code_url": code_url,
        "paper_url": paper_url,
        "inference_details": inference_details,
        "status": "pending",
    }
    try:
        with open(f"{EVAL_REQUESTS_PATH}/{model_id}.json", "w") as f:
            json.dump(request_obj, f)
        API.upload_file(
            path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.json",
            path_in_repo=f"{model_id}.json",
            repo_id=QUEUE_REPO,
            repo_type="dataset",
            commit_message=f"Add {model_name} to evaluation queue",
        )
        API.upload_file(
            path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz",
            path_in_repo=f"{model_id}.tar.gz",
            repo_id=QUEUE_REPO,
            repo_type="dataset",
            commit_message=f"Add {model_name} to evaluation queue",
        )
    except error as e:
        os.remove(f"{EVAL_REQUESTS_PATH}/{model_id}.json")
        return f"Error: {e}"
    
    return "Model submitted successfully πŸŽ‰"


### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO,
        local_dir=EVAL_RESULTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
except Exception:
    restart_space()


def rounded_df(df):
    df = df.copy()
    for col in df.columns:
        if isinstance(col.values[0], float):
            df[col] = df[col].apply(lambda x: round(x, 2))
    return df

results_df = pd.read_csv(EVAL_RESULTS_PATH + "/results.csv")

agg_df = BenchmarkSuite.aggregate_df(results_df)
agg_df = agg_df.pivot(index="dataset", columns="benchmark_category", values="score")
agg_df.rename(columns={"OVERALL": "General"}, inplace=True)
agg_df.columns = [x.capitalize() for x in agg_df.columns]
mean_cols = [col for col in agg_df.columns if str(col) not in ["Mean", "Environment", "Model", "Tags"]]
agg_df["Mean"] = agg_df[mean_cols].mean(axis=1)
# make sure mean is the first column
agg_df = agg_df[["Mean"] + [col for col in agg_df.columns if col != "Mean"]]
agg_df["Tags"] = ""
agg_df.reset_index(inplace=True)
agg_df.rename(columns={"dataset": "Model"}, inplace=True)
agg_df.sort_values("Mean", ascending=False, inplace=True)

benchmark_df = results_df.pivot(index="dataset", columns="benchmark_name", values="score")

# get benchmark name order by category
benchmark_order = list(results_df.sort_values("benchmark_category")["benchmark_name"].unique())
benchmark_df = benchmark_df[benchmark_order]
benchmark_df = benchmark_df.reset_index()
benchmark_df.rename(columns={"dataset": "Model"}, inplace=True)
# set index
benchmark_df.set_index("Model", inplace=True)
benchmark_df["Mean"] = benchmark_df.mean(axis=1)
# make sure mean is the first column
benchmark_df = benchmark_df[["Mean"] + [col for col in benchmark_df.columns if col != "Mean"]]
benchmark_df["Tags"] = ""
benchmark_df.reset_index(inplace=True)
benchmark_df.sort_values("Mean", ascending=False, inplace=True)

# get details for each model
model_detail_files = Path(EVAL_REQUESTS_PATH).glob("*.json")
model_details = {}
for model_detail_file in model_detail_files:
    with open(model_detail_file) as f:
        model_detail = json.load(f)
    model_details[model_detail_file.stem] = model_detail

# replace .tar.gz
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
agg_df["Model"] = agg_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))

benchmark_df["Tags"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
agg_df["Tags"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))

benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
agg_df["Model"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))

f_b_df = benchmark_df.copy()
f_a_df = agg_df.copy()


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    df_types = []
    for col in dataframe.columns:
        if col == "Model":
            df_types.append("markdown")
        elif col == "Tags":
            df_types.append("markdown")
        else:
            df_types.append("number")
    cols = list(dataframe.columns)
    cols.remove("Tags")
    return Leaderboard(
        value=rounded_df(dataframe),
        select_columns=SelectColumns(
            default_selection=cols,
            cant_deselect=["Model", "Mean"],
            label="Select Columns to Display:",
        ),
        search_columns=["Model", "Tags"],
        filter_columns=[],
        interactive=False,
        datatype=df_types,
    )


app = gr.Blocks(css=custom_css, title="TTS Benchmark Leaderboard")

with app:
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… TTSDB Scores", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Group():
                env = gr.Checkbox(value=True, label="Exclude environment from mean.")
                gr.Markdown("**Environment** measures how well the system can reproduce noise in the training data. This doesn't correlate with human judgements for 'naturalness'")
            tags = gr.Dropdown(
                TAGS,
                value=[],
                multiselect=True,
                label="Tags",
                info="Select tags to filter the leaderboard. You can suggest new tags here: https://huggingface.co/spaces/ttsds/benchmark/discussions/1",
            )
            leaderboard = init_leaderboard(f_a_df)
            tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
            env.change(change_mean, [env, leaderboard], [leaderboard])
        with gr.TabItem("πŸ… Individual Benchmarks", elem_id="llm-benchmark-tab-table", id=1):
            tags = gr.Dropdown(
                TAGS,
                value=[],
                multiselect=True,
                label="Tags",
                info="Select tags to filter the leaderboard",
            )
            leaderboard = init_leaderboard(f_b_df)
            tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
        with gr.TabItem("πŸ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
        with gr.TabItem("πŸš€ Submit here!", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
                with gr.Row():
                    gr.Markdown("# βœ‰οΈβœ¨ Submit a TTS dataset here!", elem_classes="markdown-text")
                with gr.Row():
                    with gr.Column():
                        model_name_textbox = gr.Textbox(label="Model name")
                        model_tags_dropdown = gr.Dropdown(
                            label="Model tags",
                            choices=TAGS,
                            multiselect=True,
                        )
                        website_url_textbox = gr.Textbox(label="Website URL (optional)")
                        hf_url_textbox = gr.Textbox(label="Huggingface URL (optional)")
                        code_url_textbox = gr.Textbox(label="Code URL (optional)")
                        paper_url_textbox = gr.Textbox(label="Paper URL (optional)")
                        inference_details_textbox = gr.TextArea(label="Inference details (optional)")
                        file_input = gr.File(file_types=[".gz"], interactive=True, label=".tar.gz TTS dataset")
                        submit_button = gr.Button("Submit Eval")
                        submission_result = gr.Markdown()
                        submit_button.click(
                            submit_eval,
                            [
                                model_name_textbox,
                                model_tags_dropdown,
                                website_url_textbox,
                                hf_url_textbox,
                                code_url_textbox,
                                paper_url_textbox,
                                inference_details_textbox,
                                file_input,
                            ],
                            submission_result,
                        )

    with gr.Row():
        with gr.Accordion("Citation", open=False):
            gr.Markdown(f"Copy the BibTeX citation to cite this source:\n\n```bibtext\n{CITATION_TEXT}\n```")

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()

app.queue(default_concurrency_limit=40).launch()