Spaces:
Running
Running
fix rounding
Browse files
app.py
CHANGED
@@ -26,6 +26,7 @@ def filter_dfs(tags, lb):
|
|
26 |
lb = f_b_df.copy()
|
27 |
if tags and len(lb) > 0:
|
28 |
lb = lb[lb["Tags"].apply(lambda x: any(tag in x for tag in tags))]
|
|
|
29 |
return lb
|
30 |
|
31 |
def change_mean(env, lb):
|
@@ -36,6 +37,7 @@ def change_mean(env, lb):
|
|
36 |
else:
|
37 |
mean_cols = [col for col in lb.columns if str(col) not in ["Mean", "Model", "Tags"]]
|
38 |
lb["Mean"] = lb[mean_cols].mean(axis=1)
|
|
|
39 |
return lb
|
40 |
|
41 |
def restart_space():
|
@@ -132,6 +134,13 @@ except Exception:
|
|
132 |
restart_space()
|
133 |
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
results_df = pd.read_csv(EVAL_RESULTS_PATH + "/results.csv")
|
136 |
|
137 |
agg_df = BenchmarkSuite.aggregate_df(results_df)
|
@@ -142,8 +151,6 @@ mean_cols = [col for col in agg_df.columns if str(col) not in ["Mean", "Environm
|
|
142 |
agg_df["Mean"] = agg_df[mean_cols].mean(axis=1)
|
143 |
# make sure mean is the first column
|
144 |
agg_df = agg_df[["Mean"] + [col for col in agg_df.columns if col != "Mean"]]
|
145 |
-
for col in agg_df.columns:
|
146 |
-
agg_df[col] = agg_df[col].apply(lambda x: round(x, 2))
|
147 |
agg_df["Tags"] = ""
|
148 |
agg_df.reset_index(inplace=True)
|
149 |
agg_df.rename(columns={"dataset": "Model"}, inplace=True)
|
@@ -161,9 +168,6 @@ benchmark_df.set_index("Model", inplace=True)
|
|
161 |
benchmark_df["Mean"] = benchmark_df.mean(axis=1)
|
162 |
# make sure mean is the first column
|
163 |
benchmark_df = benchmark_df[["Mean"] + [col for col in benchmark_df.columns if col != "Mean"]]
|
164 |
-
# round all
|
165 |
-
for col in benchmark_df.columns:
|
166 |
-
benchmark_df[col] = benchmark_df[col].apply(lambda x: round(x, 2))
|
167 |
benchmark_df["Tags"] = ""
|
168 |
benchmark_df.reset_index(inplace=True)
|
169 |
benchmark_df.sort_values("Mean", ascending=False, inplace=True)
|
@@ -204,7 +208,7 @@ def init_leaderboard(dataframe):
|
|
204 |
cols = list(dataframe.columns)
|
205 |
cols.remove("Tags")
|
206 |
return Leaderboard(
|
207 |
-
value=dataframe,
|
208 |
select_columns=SelectColumns(
|
209 |
default_selection=cols,
|
210 |
cant_deselect=["Model", "Mean"],
|
|
|
26 |
lb = f_b_df.copy()
|
27 |
if tags and len(lb) > 0:
|
28 |
lb = lb[lb["Tags"].apply(lambda x: any(tag in x for tag in tags))]
|
29 |
+
lb = rounded_df(lb)
|
30 |
return lb
|
31 |
|
32 |
def change_mean(env, lb):
|
|
|
37 |
else:
|
38 |
mean_cols = [col for col in lb.columns if str(col) not in ["Mean", "Model", "Tags"]]
|
39 |
lb["Mean"] = lb[mean_cols].mean(axis=1)
|
40 |
+
lb = rounded_df(lb)
|
41 |
return lb
|
42 |
|
43 |
def restart_space():
|
|
|
134 |
restart_space()
|
135 |
|
136 |
|
137 |
+
def rounded_df(df):
|
138 |
+
df = df.copy()
|
139 |
+
for col in df.columns:
|
140 |
+
if isinstance(col.values[0], float):
|
141 |
+
df[col] = df[col].apply(lambda x: round(x, 2))
|
142 |
+
return df
|
143 |
+
|
144 |
results_df = pd.read_csv(EVAL_RESULTS_PATH + "/results.csv")
|
145 |
|
146 |
agg_df = BenchmarkSuite.aggregate_df(results_df)
|
|
|
151 |
agg_df["Mean"] = agg_df[mean_cols].mean(axis=1)
|
152 |
# make sure mean is the first column
|
153 |
agg_df = agg_df[["Mean"] + [col for col in agg_df.columns if col != "Mean"]]
|
|
|
|
|
154 |
agg_df["Tags"] = ""
|
155 |
agg_df.reset_index(inplace=True)
|
156 |
agg_df.rename(columns={"dataset": "Model"}, inplace=True)
|
|
|
168 |
benchmark_df["Mean"] = benchmark_df.mean(axis=1)
|
169 |
# make sure mean is the first column
|
170 |
benchmark_df = benchmark_df[["Mean"] + [col for col in benchmark_df.columns if col != "Mean"]]
|
|
|
|
|
|
|
171 |
benchmark_df["Tags"] = ""
|
172 |
benchmark_df.reset_index(inplace=True)
|
173 |
benchmark_df.sort_values("Mean", ascending=False, inplace=True)
|
|
|
208 |
cols = list(dataframe.columns)
|
209 |
cols.remove("Tags")
|
210 |
return Leaderboard(
|
211 |
+
value=rounded_df(dataframe),
|
212 |
select_columns=SelectColumns(
|
213 |
default_selection=cols,
|
214 |
cant_deselect=["Model", "Mean"],
|