Spaces:
Running
Running
File size: 11,875 Bytes
e03a54f e59f801 e03a54f 90c07f0 e03a54f 90c07f0 e03a54f ca5e049 e03a54f 90c07f0 e03a54f ad01db8 e03a54f 90c07f0 4bc7be5 ad01db8 4bc7be5 90c07f0 9c2d40e e03a54f adc647c e03a54f e59f801 62bbe51 e59f801 62bbe51 e59f801 e03a54f 90c07f0 9c2d40e 90c07f0 9c2d40e 90c07f0 ad01db8 5bc5b10 ad01db8 e03a54f 4bc7be5 e03a54f 90c07f0 e03a54f 90c07f0 9c2d40e 90c07f0 e03a54f 27a8f27 90c07f0 ad01db8 90c07f0 27a8f27 e03a54f 90c07f0 e03a54f 90c07f0 e03a54f 90c07f0 e03a54f 9c2d40e e03a54f 4bc7be5 e03a54f 4bc7be5 e03a54f 026ee6b e03a54f 026ee6b e03a54f 90c07f0 ca5e049 90c07f0 026ee6b e03a54f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
from pathlib import Path
import json
import os
import gradio as gr
from huggingface_hub import snapshot_download
from gradio_leaderboard import Leaderboard, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from ttsds.benchmarks.benchmark import BenchmarkCategory
from ttsds import BenchmarkSuite
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN, TAGS
from src.texts import LLM_BENCHMARKS_TEXT, EVALUATION_QUEUE_TEXT, CITATION_TEXT
from src.css_html_js import custom_css
def filter_dfs(tags, lb):
global f_b_df, f_a_df
is_agg = False
if "Environment" in lb.columns:
is_agg = True
if is_agg:
lb = f_a_df.copy()
else:
lb = f_b_df.copy()
if tags and len(lb) > 0:
lb = lb[lb["Tags"].apply(lambda x: any(tag in x for tag in tags))]
lb = rounded_df(lb)
return lb
def change_mean(env, lb):
global f_b_df, f_a_df
lb = f_a_df.copy()
if env:
mean_cols = [col for col in lb.columns if str(col) not in ["Mean", "Environment", "Model", "Tags"]]
else:
mean_cols = [col for col in lb.columns if str(col) not in ["Mean", "Model", "Tags"]]
lb["Mean"] = lb[mean_cols].mean(axis=1)
lb = rounded_df(lb)
return lb
def restart_space():
API.restart_space(repo_id=REPO_ID)
def submit_eval(model_name, model_tags, web_url, hf_url, code_url, paper_url, inference_details, file_path):
model_id = model_name.lower().replace(" ", "_")
# check if model already exists
if Path(f"{EVAL_REQUESTS_PATH}/{model_id}.json").exists():
return "Model already exists in the evaluation queue"
# check which urls are valid
if web_url and not web_url.startswith("http"):
return "Please enter a valid URL"
if hf_url and not hf_url.startswith("http"):
return "Please enter a valid URL"
if code_url and not code_url.startswith("http"):
return "Please enter a valid URL"
if paper_url and not paper_url.startswith("http"):
return "Please enter a valid URL"
# move file to correct location
if not file_path.endswith(".tar.gz"):
return "Please upload a .tar.gz file"
Path(file_path).rename(f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz")
# build display name - use web_url to link text if available, and emojis for the other urls
display_name = model_name + " "
if web_url:
display_name = f"[{display_name}]({web_url}) "
if hf_url:
display_name += f"[π€]({hf_url})"
if code_url:
display_name += f"[π»]({code_url})"
if paper_url:
display_name += f"[π]({paper_url})"
request_obj = {
"model_name": model_name,
"display_name": display_name,
"model_tags": model_tags,
"web_url": web_url,
"hf_url": hf_url,
"code_url": code_url,
"paper_url": paper_url,
"inference_details": inference_details,
"status": "pending",
}
try:
with open(f"{EVAL_REQUESTS_PATH}/{model_id}.json", "w") as f:
json.dump(request_obj, f)
API.upload_file(
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.json",
path_in_repo=f"{model_id}.json",
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to evaluation queue",
)
API.upload_file(
path_or_fileobj=f"{EVAL_REQUESTS_PATH}/{model_id}.tar.gz",
path_in_repo=f"{model_id}.tar.gz",
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model_name} to evaluation queue",
)
except error as e:
os.remove(f"{EVAL_REQUESTS_PATH}/{model_id}.json")
return f"Error: {e}"
return "Model submitted successfully π"
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO,
local_dir=EVAL_RESULTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
def rounded_df(df):
df = df.copy()
for col in df.columns:
if isinstance(df[col].values[0], float):
df[col] = df[col].apply(lambda x: round(x, 2))
return df
results_df = pd.read_csv(EVAL_RESULTS_PATH + "/results.csv")
agg_df = BenchmarkSuite.aggregate_df(results_df)
agg_df = agg_df.pivot(index="dataset", columns="benchmark_category", values="score")
agg_df.rename(columns={"OVERALL": "General"}, inplace=True)
agg_df.columns = [x.capitalize() for x in agg_df.columns]
mean_cols = [col for col in agg_df.columns if str(col) not in ["Mean", "Environment", "Model", "Tags"]]
agg_df["Mean"] = agg_df[mean_cols].mean(axis=1)
# make sure mean is the first column
agg_df = agg_df[["Mean"] + [col for col in agg_df.columns if col != "Mean"]]
agg_df["Tags"] = ""
agg_df.reset_index(inplace=True)
agg_df.rename(columns={"dataset": "Model"}, inplace=True)
agg_df.sort_values("Mean", ascending=False, inplace=True)
benchmark_df = results_df.pivot(index="dataset", columns="benchmark_name", values="score")
# get benchmark name order by category
benchmark_order = list(results_df.sort_values("benchmark_category")["benchmark_name"].unique())
benchmark_df = benchmark_df[benchmark_order]
benchmark_df = benchmark_df.reset_index()
benchmark_df.rename(columns={"dataset": "Model"}, inplace=True)
# set index
benchmark_df.set_index("Model", inplace=True)
benchmark_df["Mean"] = benchmark_df.mean(axis=1)
# make sure mean is the first column
benchmark_df = benchmark_df[["Mean"] + [col for col in benchmark_df.columns if col != "Mean"]]
benchmark_df["Tags"] = ""
benchmark_df.reset_index(inplace=True)
benchmark_df.sort_values("Mean", ascending=False, inplace=True)
# get details for each model
model_detail_files = Path(EVAL_REQUESTS_PATH).glob("*.json")
model_details = {}
for model_detail_file in model_detail_files:
with open(model_detail_file) as f:
model_detail = json.load(f)
model_details[model_detail_file.stem] = model_detail
# replace .tar.gz
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
agg_df["Model"] = agg_df["Model"].apply(lambda x: x.replace(".tar.gz", ""))
benchmark_df["Tags"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
agg_df["Tags"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("model_tags", ""))
benchmark_df["Model"] = benchmark_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
agg_df["Model"] = agg_df["Model"].apply(lambda x: model_details.get(x, {}).get("display_name", x))
f_b_df = benchmark_df.copy()
f_a_df = agg_df.copy()
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
df_types = []
for col in dataframe.columns:
if col == "Model":
df_types.append("markdown")
elif col == "Tags":
df_types.append("markdown")
else:
df_types.append("number")
cols = list(dataframe.columns)
cols.remove("Tags")
return Leaderboard(
value=rounded_df(dataframe),
select_columns=SelectColumns(
default_selection=cols,
cant_deselect=["Model", "Mean"],
label="Select Columns to Display:",
),
search_columns=["Model", "Tags"],
filter_columns=[],
interactive=False,
datatype=df_types,
)
app = gr.Blocks(css=custom_css, title="TTS Benchmark Leaderboard")
with app:
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
TTSDB Scores", elem_id="llm-benchmark-tab-table", id=0):
with gr.Group():
env = gr.Checkbox(value=True, label="Exclude environment from mean.")
gr.Markdown("**Environment** measures how well the system can reproduce noise in the training data. This doesn't correlate with human judgements for 'naturalness'")
tags = gr.Dropdown(
TAGS,
value=[],
multiselect=True,
label="Tags",
info="Select tags to filter the leaderboard. You can suggest new tags here: https://huggingface.co/spaces/ttsds/benchmark/discussions/1",
)
leaderboard = init_leaderboard(f_a_df)
tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
env.change(change_mean, [env, leaderboard], [leaderboard])
with gr.TabItem("π
Individual Benchmarks", elem_id="llm-benchmark-tab-table", id=1):
tags = gr.Dropdown(
TAGS,
value=[],
multiselect=True,
label="Tags",
info="Select tags to filter the leaderboard",
)
leaderboard = init_leaderboard(f_b_df)
tags.change(filter_dfs, [tags, leaderboard], [leaderboard])
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here!", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit a TTS dataset here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
model_tags_dropdown = gr.Dropdown(
label="Model tags",
choices=TAGS,
multiselect=True,
)
website_url_textbox = gr.Textbox(label="Website URL (optional)")
hf_url_textbox = gr.Textbox(label="Huggingface URL (optional)")
code_url_textbox = gr.Textbox(label="Code URL (optional)")
paper_url_textbox = gr.Textbox(label="Paper URL (optional)")
inference_details_textbox = gr.TextArea(label="Inference details (optional)")
file_input = gr.File(file_types=[".gz"], interactive=True, label=".tar.gz TTS dataset")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
submit_eval,
[
model_name_textbox,
model_tags_dropdown,
website_url_textbox,
hf_url_textbox,
code_url_textbox,
paper_url_textbox,
inference_details_textbox,
file_input,
],
submission_result,
)
with gr.Row():
with gr.Accordion("Citation", open=False):
gr.Markdown(f"Copy the BibTeX citation to cite this source:\n\n```bibtext\n{CITATION_TEXT}\n```")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
app.queue(default_concurrency_limit=40).launch()
|