File size: 17,189 Bytes
028c5b3
 
a866b04
 
 
 
 
 
 
 
 
 
 
 
 
68221c5
a866b04
 
 
 
 
 
dc39771
0e6b5f9
a866b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb796b9
a866b04
12f63d9
 
 
 
e534478
a866b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc93fb
 
 
 
 
2d0ea67
a866b04
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0ea67
3bc93fb
 
dc39771
a866b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0ea67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bc93fb
2d0ea67
 
 
 
 
 
 
 
 
 
 
a866b04
2d0ea67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a866b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e16bad8
a866b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0ea67
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
import spaces

import torch
import torchvision.transforms.functional as TF
import numpy as np
import random
import os
import sys

from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler, T2IAdapter

from huggingface_hub import hf_hub_download
import gradio as gr

from pipeline_t2i_adapter import PhotoMakerStableDiffusionXLAdapterPipeline
from face_utils import FaceAnalysis2, analyze_faces

from style_template import styles
from aspect_ratio_template import aspect_ratios

# global variable
base_model_path = 'SG161222/RealVisXL_V5.0'
face_detector = FaceAnalysis2(providers=['CPUExecutionProvider', 'CUDAExecutionProvider'], allowed_modules=['detection', 'recognition'])
face_detector.prepare(ctx_id=0, det_size=(640, 640))

try:
    if torch.cuda.is_available():
        device = "cuda"
    elif sys.platform == "darwin" and torch.backends.mps.is_available():
        device = "mps"
    else:
        device = "cpu"
except:
    device = "cpu"

MAX_SEED = np.iinfo(np.int32).max
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Photographic (Default)"
ASPECT_RATIO_LABELS = list(aspect_ratios)
DEFAULT_ASPECT_RATIO = ASPECT_RATIO_LABELS[0]

enable_doodle_arg = False
photomaker_ckpt = hf_hub_download(repo_id="TencentARC/PhotoMaker-V2", filename="photomaker-v2.bin", repo_type="model")

if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
    torch_dtype = torch.bfloat16
else:
    torch_dtype = torch.float16

if device == "mps":
    torch_dtype = torch.float16
    
# load adapter
adapter = T2IAdapter.from_pretrained(
    "TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch_dtype, variant="fp16"
).to(device)

pipe = PhotoMakerStableDiffusionXLAdapterPipeline.from_pretrained(
    base_model_path, 
    adapter=adapter, 
    torch_dtype=torch_dtype,
    use_safetensors=True, 
    variant="fp16",
).to(device)

pipe.unet = pipe.unet.to(device=device, dtype=torch_dtype)
pipe.text_encoder = pipe.text_encoder.to(device=device, dtype=torch_dtype)
pipe.text_encoder_2 = pipe.text_encoder_2.to(device=device, dtype=torch_dtype)
pipe.vae = pipe.vae.to(device=device, dtype=torch_dtype)


pipe.load_photomaker_adapter(
    os.path.dirname(photomaker_ckpt),
    subfolder="",
    weight_name=os.path.basename(photomaker_ckpt),
    trigger_word="img",
    pm_version="v2",
)
pipe.id_encoder.to(device)

pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
# pipe.set_adapters(["photomaker"], adapter_weights=[1.0])
pipe.fuse_lora()
pipe.to(device)


pipe.enable_vae_slicing()
pipe.enable_vae_tiling()
@spaces.GPU(duration=120)
def generate_image(
    upload_images, 
    prompt, 
    negative_prompt, 
    aspect_ratio_name, 
    style_name, 
    num_steps, 
    style_strength_ratio, 
    num_outputs, 
    guidance_scale, 
    seed, 
    use_doodle,
    sketch_image,
    adapter_conditioning_scale,
    adapter_conditioning_factor,
    progress=gr.Progress(track_tqdm=True)
):
    if use_doodle:
        sketch_image = sketch_image["composite"]
        r, g, b, a = sketch_image.split()
        sketch_image = a.convert("RGB")
        sketch_image = TF.to_tensor(sketch_image) > 0.5 # Inversion 
        sketch_image = TF.to_pil_image(sketch_image.to(torch.float32))
        adapter_conditioning_scale = adapter_conditioning_scale
        adapter_conditioning_factor = adapter_conditioning_factor
    else:
        adapter_conditioning_scale = 0.
        adapter_conditioning_factor = 0.
        sketch_image = None

    # check the trigger word
    image_token_id = pipe.tokenizer.convert_tokens_to_ids(pipe.trigger_word)
    input_ids = pipe.tokenizer.encode(prompt)
    if image_token_id not in input_ids:
        raise gr.Error(f"Cannot find the trigger word '{pipe.trigger_word}' in text prompt! Please refer to step 2️⃣")

    if input_ids.count(image_token_id) > 1:
        raise gr.Error(f"Cannot use multiple trigger words '{pipe.trigger_word}' in text prompt!")

    # determine output dimensions by the aspect ratio
    output_w, output_h = aspect_ratios[aspect_ratio_name]
    print(f"[Debug] Generate image using aspect ratio [{aspect_ratio_name}] => {output_w} x {output_h}")

    # apply the style template
    prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)

    if upload_images is None:
        raise gr.Error(f"Cannot find any input face image! Please refer to step 1️⃣")

    input_id_images = []
    for img in upload_images:
        input_id_images.append(load_image(img))
    
    id_embed_list = []

    for img in input_id_images:
        img = np.array(img)
        img = img[:, :, ::-1]
        faces = analyze_faces(face_detector, img)
        if len(faces) > 0:
            id_embed_list.append(torch.from_numpy((faces[0]['embedding'])))

    if len(id_embed_list) == 0:
        raise gr.Error(f"No face detected, please update the input face image(s)")
    
    id_embeds = torch.stack(id_embed_list)

    generator = torch.Generator(device=device).manual_seed(seed)

    print("Start inference...")
    print(f"[Debug] Seed: {seed}")
    print(f"[Debug] Prompt: {prompt}, \n[Debug] Neg Prompt: {negative_prompt}")
    start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
    if start_merge_step > 30:
        start_merge_step = 30
    print(start_merge_step)
    images = pipe(
        prompt=prompt,
        width=output_w,
        height=output_h,
        input_id_images=input_id_images,
        negative_prompt=negative_prompt,
        num_images_per_prompt=num_outputs,
        num_inference_steps=num_steps,
        start_merge_step=start_merge_step,
        generator=generator,
        guidance_scale=guidance_scale,
        id_embeds=id_embeds,
        image=sketch_image,
        adapter_conditioning_scale=adapter_conditioning_scale,
        adapter_conditioning_factor=adapter_conditioning_factor,
    ).images
    return images, gr.update(visible=True)

def swap_to_gallery(images):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def upload_example_to_gallery(images, prompt, style, negative_prompt):
    return gr.update(value=images, visible=True), gr.update(visible=True), gr.update(visible=False)

def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
    
def change_doodle_space(use_doodle):
    if use_doodle:
        return gr.update(visible=True)
    else:
        return gr.update(visible=False)

def remove_tips():
    return gr.update(visible=False)

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive), n + ' ' + negative

def get_image_path_list(folder_name):
    image_basename_list = os.listdir(folder_name)
    image_path_list = sorted([os.path.join(folder_name, basename) for basename in image_basename_list])
    return image_path_list

def get_example():
    case = [
        [
            get_image_path_list('./examples/scarletthead_woman'),
            "instagram photo, portrait photo of a woman img, colorful, perfect face, natural skin, hard shadows, film grain",
            "(No style)",
            "(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
        ],
        [
            get_image_path_list('./examples/newton_man'),
            "sci-fi, closeup portrait photo of a man img wearing the sunglasses in Iron man suit, face, slim body, high quality, film grain",
            "(No style)",
            "(asymmetry, worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth",
        ],
    ]
    return case

### Description and style
logo = r"""
<center><img src='https://photo-maker.github.io/assets/logo.png' alt='PhotoMaker logo' style="width:80px; margin-bottom:10px"></center>
"""
title = r"""
<h1 align="center">PhotoMaker V2: Improved ID Fidelity and Better Controllability than PhotoMaker V1</h1>
"""

description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'><b>PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding</b></a>.<br>
How to use PhotoMaker V2 can be found in 🎬 <a href='https://photo-maker.github.io/assets/demo_pm_v2_full.mp4' target='_blank'>this video</a> 🎬.
<br>
<br>
For previous version of PhotoMaker, you could use our original gradio demos [PhotoMaker](https://huggingface.co/spaces/TencentARC/PhotoMaker) and [PhotoMaker-Style](https://huggingface.co/spaces/TencentARC/PhotoMaker-Style).
<br>
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
1️⃣ Upload images of someone you want to customize. One image is ok, but more is better.  Although we do not perform face detection, the face in the uploaded image should <b>occupy the majority of the image</b>.<br>
2️⃣ Enter a text prompt, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
3️⃣ Choose your preferred style template.<br>
4️⃣ <b>(Optional: but new feature)</b> Select the ‘Enable Drawing Doodle...’ option and draw on the canvas<br>
5️⃣ Click the <b>Submit</b> button to start customizing.
"""

article = r"""

If PhotoMaker V2 is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/PhotoMaker' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC/PhotoMaker?style=social)](https://github.com/TencentARC/PhotoMaker)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:

```bibtex
@article{li2023photomaker,
  title={PhotoMaker: Customizing Realistic Human Photos via Stacked ID Embedding},
  author={Li, Zhen and Cao, Mingdeng and Wang, Xintao and Qi, Zhongang and Cheng, Ming-Ming and Shan, Ying},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2024}
}
```
📋 **License**
<br>
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/TencentARC/PhotoMaker/blob/main/LICENSE) for details.

📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>zhenli1031@gmail.com</b>.
"""

tips = r"""
### Usage tips of PhotoMaker
1. Upload **more photos**of the person to be customized to **improve ID fidelty**.
2. If you find that the image quality is poor when using doodle for control, you can reduce the conditioning scale and factor of the adapter.
If you have any issues, leave the issue in the discussion page of the space. For a more stable (queue-free) experience, you can duplicate the space.
"""
# We have provided some generate examples and comparisons at: [this website]().

css = '''
.gradio-container {width: 85% !important}
'''
with gr.Blocks(css=css) as demo:
    gr.Markdown(logo)
    gr.Markdown(title)
    gr.Markdown(description)
    # gr.DuplicateButton(
    #     value="Duplicate Space for private use ",
    #     elem_id="duplicate-button",
    #     visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1",
    # )
    with gr.Row():
        with gr.Column():
            files = gr.Files(
                        label="Drag (Select) 1 or more photos of your face",
                        file_types=["image"]
                    )
            uploaded_files = gr.Gallery(label="Your images", visible=False, columns=5, rows=1, height=200)
            with gr.Column(visible=False) as clear_button:
                remove_and_reupload = gr.ClearButton(value="Remove and upload new ones", components=files, size="sm")
            prompt = gr.Textbox(label="Prompt",
                       info="Try something like 'a photo of a man/woman img', 'img' is the trigger word.",
                       placeholder="A photo of a [man/woman img]...")
            style = gr.Dropdown(label="Style template", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
            aspect_ratio = gr.Dropdown(label="Output aspect ratio", choices=ASPECT_RATIO_LABELS, value=DEFAULT_ASPECT_RATIO)
            submit = gr.Button("Submit")

            enable_doodle = gr.Checkbox(
                label="Enable Drawing Doodle for Control", value=enable_doodle_arg,
                info="After enabling this option, PhotoMaker will generate content based on your doodle on the canvas, driven by the T2I-Adapter (Quality may be decreased)",
            )
            with gr.Accordion("T2I-Adapter-Doodle (Optional)", visible=False) as doodle_space:
                with gr.Row():
                    sketch_image = gr.Sketchpad(
                        label="Canvas",
                        type="pil",
                        crop_size=[1024,1024],
                        layers=False,
                        canvas_size=(350, 350),
                        brush=gr.Brush(default_size=5, colors=["#000000"], color_mode="fixed")
                    )
                    with gr.Group():
                        adapter_conditioning_scale = gr.Slider(
                            label="Adapter conditioning scale",
                            minimum=0.5,
                            maximum=1,
                            step=0.1,
                            value=0.7,
                        )
                        adapter_conditioning_factor = gr.Slider(
                            label="Adapter conditioning factor",
                            info="Fraction of timesteps for which adapter should be applied",
                            minimum=0.5,
                            maximum=1,
                            step=0.1,
                            value=0.8,
                        )
            with gr.Accordion(open=False, label="Advanced Options"):
                negative_prompt = gr.Textbox(
                    label="Negative Prompt", 
                    placeholder="low quality",
                    value="nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
                )
                num_steps = gr.Slider( 
                    label="Number of sample steps",
                    minimum=20,
                    maximum=100,
                    step=1,
                    value=50,
                )
                style_strength_ratio = gr.Slider(
                    label="Style strength (%)",
                    minimum=15,
                    maximum=50,
                    step=1,
                    value=20,
                )
                num_outputs = gr.Slider(
                    label="Number of output images",
                    minimum=1,
                    maximum=4,
                    step=1,
                    value=2,
                )
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.1,
                    maximum=10.0,
                    step=0.1,
                    value=5,
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Column():
            gallery = gr.Gallery(label="Generated Images")
            usage_tips = gr.Markdown(label="Usage tips of PhotoMaker", value=tips ,visible=False)

        files.upload(fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files])
        remove_and_reupload.click(fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files])
        enable_doodle.select(fn=change_doodle_space, inputs=enable_doodle, outputs=doodle_space)

        input_list = [
            files, 
            prompt, 
            negative_prompt, 
            aspect_ratio, 
            style, 
            num_steps, 
            style_strength_ratio, 
            num_outputs, 
            guidance_scale, 
            seed,
            enable_doodle,
            sketch_image,
            adapter_conditioning_scale,
            adapter_conditioning_factor
        ]

        submit.click(
            fn=remove_tips,
            outputs=usage_tips,            
        ).then(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=generate_image,
            inputs=input_list,
            outputs=[gallery, usage_tips]
        )

    gr.Examples(
        examples=get_example(),
        inputs=[files, prompt, style, negative_prompt],
        run_on_click=True,
        fn=upload_example_to_gallery,
        outputs=[uploaded_files, clear_button, files],
    )
    
    gr.Markdown(article)
    
demo.launch()