File size: 3,455 Bytes
4d3d744
 
d231795
 
4d3d744
d231795
4d3d744
 
 
d016be4
d10efa1
101323a
096a91f
d10efa1
d016be4
fe6ddb2
d10efa1
fe6ddb2
 
 
096a91f
 
d10efa1
d016be4
fe6ddb2
d10efa1
d016be4
fe6ddb2
d10efa1
d016be4
fe6ddb2
f580ac8
fe6ddb2
b6e15c6
096a91f
d10efa1
fe6ddb2
 
 
 
 
 
 
 
d016be4
096a91f
d10efa1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
title: README
emoji: πŸ‘
colorFrom: pink
colorTo: indigo
sdk: static
pinned: false
---

<!-- The classes below are necessary for correct rendering -->
<div class="lg:col-span-3">
  <p class="mb-2">
    This organization is a part of the NeurIPS 2021 demonstration <u><a href="https://training-transformers-together.github.io/">"Training Transformers Together"</a></u>.
  </p>
  <p class="mb-2">
    In this demo, we've trained a model similar to <u><a target="_blank" href="https://openai.com/blog/dall-e/">OpenAI DALL-E</a></u> β€”
    a Transformer "language model" that generates images from text descriptions.
    Training happened collaboratively β€” volunteers from all over the Internet contributed to the training using hardware available to them.
    We used <u><a target="_blank" href="https://laion.ai/laion-400-open-dataset/">LAION-400M</a></u>,
    the world's largest openly available image-text-pair dataset with 400 million samples. Our model was based on
    the <u><a target="_blank" href="https://github.com/lucidrains/DALLE-pytorch">dalle‑pytorch</a></u> implementation
    by <u><a target="_blank" href="https://github.com/lucidrains">Phil Wang</a></u> with a few tweaks to make it communication-efficient.
  </p>
  <p class="mb-2">
    See details about how it works on <u><a target="_blank" href="https://training-transformers-together.github.io/">our website</a></u>.
  </p>
  <p class="mb-2">
    This organization gathers people participating in the collaborative training and provides links to the related materials:
  </p>
  <ul class="mb-2">
    <li>πŸ‘‰ <u><a target="_blank" href="https://training-transformers-together.github.io/InferenceResults.html">Inference results</a></u></li></li>
    <li>πŸ‘‰ <u><a target="_blank" href="https://huggingface.co/training-transformers-together/dalle-demo-v1">Model weights</a></u> (the latest checkpoint)</li></li>
    <li>πŸ‘‰ <u><a target="_blank" href="https://colab.research.google.com/drive/1sXHqy5hKVEQyFX-H2Ai7KzLij-7M_xCB?usp=sharing">Colab notebook for running inference</a> (updated on Apr 5)</u>
    <li>πŸ‘‰ <u><a target="_blank" href="https://github.com/learning-at-home/dalle-hivemind">Code</a></u></li>
    <li>πŸ‘‰ <u><a target="_blank" href="https://huggingface.co/datasets/laion/laion_100m_vqgan_f8">Dataset</a></u></li>
  </ul>
  <p class="mb-2">
    The materials below were available during the training run itself:
  </p>
  <ul class="mb-2">
    <li>πŸ‘‰ Starter kits for <u><a target="_blank" href="https://colab.research.google.com/drive/1BqTWcfsvNQwQqqCRKMKp1_jvQ5L1BhCY?usp=sharing">Google Colab</a></u>    and <u><a target="_blank" href="https://www.kaggle.com/yhn112/training-transformers-together/">Kaggle</a></u> (easy way to join the training)</li>
    <li>πŸ‘‰ <u><a target="_blank" href="https://huggingface.co/spaces/training-transformers-together/Dashboard">Dashboard</a></u> (the current training state: loss, number of peers, etc.)</li>
    <li>πŸ‘‰ Weights & Biases plots for <u><a target="_blank" href="https://wandb.ai/learning-at-home/dalle-hivemind/runs/3l7q56ht">aux peers</a></u> (aggregating the metrics) and actual <u><a target="_blank" href="https://wandb.ai/learning-at-home/dalle-hivemind-trainers">trainers</a></u> (contributing with their GPUs)</li>
  </ul>
  <p class="mb-2">
    Feel free to reach us on <u><a target="_blank" href="https://discord.gg/uGugx9zYvN">Discord</a></u> if you have any questions πŸ™‚
  </p>
</div>