File size: 9,608 Bytes
4b1fcb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import nest_asyncio\n",
"\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Generate synthetic dataset of questions + doc ids\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# DEFAULT_QA_GENERATE_PROMPT_TMPL = \"\"\"\\\n",
"# Context information is below.\n",
"\n",
"# ---------------------\n",
"# {context_str}\n",
"# ---------------------\n",
"\n",
"# Given the context information and not prior knowledge.\n",
"# generate only questions based on the below query.\n",
"\n",
"# You are a Teacher/ Professor with expertise in the field of AI. Your task is to setup \\\n",
"# {num_questions_per_chunk} questions for an upcoming \\\n",
"# quiz/examination. The questions should be diverse in nature \\\n",
"# across the document. Restrict the questions to the \\\n",
"# context information provided.\"\n",
"# \"\"\"\n",
"\n",
"STUDENT_AI_QUESTIONS_GENERATE_PROMPT_TMPL = \"\"\"\\\n",
"Context information is below.\n",
"\n",
"---------------------\n",
"{context_str}\n",
"---------------------\n",
"\n",
"Given the context information above, generate {num_questions_per_chunk} questions that a student might ask about AI, specifically related to the information provided in the context, \n",
"but without the questions mentioning the context information.\n",
"\n",
"You are simulating curious students who are learning about AI. Your task is to create questions that:\n",
"1. Reflect genuine curiosity about the topics covered in the context.\n",
"2. Vary in complexity, from basic clarifications to more advanced inquiries.\n",
"3. Demonstrate a student's desire to understand AI concepts better.\n",
"4. Can be answered using the information provided in the context.\n",
"\n",
"The questions should be diverse and cover different aspects of the content. Do not use any prior knowledge beyond what's given in the context. Ensure that each question you generate can be answered using the information provided in the context.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.llms.openai import OpenAI\n",
"from llama_index.llms.gemini import Gemini\n",
"\n",
"# llm = Gemini(model=\"models/gemini-1.5-flash-latest\", temperature=1, max_tokens=1000)\n",
"llm = OpenAI(\n",
" api_key=\"\",\n",
" model=\"gpt-4o-mini\",\n",
" temperature=1,\n",
" max_tokens=1000,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import re\n",
"import uuid\n",
"import warnings\n",
"import asyncio\n",
"from typing import Dict, List, Tuple\n",
"\n",
"from llama_index.core.llms.llm import LLM\n",
"from llama_index.core.schema import MetadataMode, TextNode\n",
"from tqdm.asyncio import tqdm as async_tqdm\n",
"from llama_index.core.llama_dataset.legacy.embedding import EmbeddingQAFinetuneDataset\n",
"from llama_index.core import Document\n",
"\n",
"\n",
"async def generate_qa_embedding_pairs(\n",
" nodes: List[TextNode],\n",
" llm: LLM,\n",
" qa_generate_prompt_tmpl: str = STUDENT_AI_QUESTIONS_GENERATE_PROMPT_TMPL,\n",
" num_questions_per_chunk: int = 1,\n",
" max_concurrent: int = 10,\n",
" delay: float = 0.5,\n",
") -> EmbeddingQAFinetuneDataset:\n",
" \"\"\"Generate examples given a set of nodes.\"\"\"\n",
" node_dict = {\n",
" node.node_id: node.get_content(metadata_mode=MetadataMode.NONE)\n",
" for node in nodes\n",
" }\n",
"\n",
" queries = {}\n",
" relevant_docs = {}\n",
" semaphore = asyncio.Semaphore(max_concurrent)\n",
"\n",
" async def process_node(node_id: str, text: str):\n",
" async with semaphore:\n",
" query = qa_generate_prompt_tmpl.format(\n",
" context_str=text, num_questions_per_chunk=num_questions_per_chunk\n",
" )\n",
" response = await llm.acomplete(\n",
" query\n",
" ) # Assuming the LLM has an async method\n",
"\n",
" result = str(response).strip().split(\"\\n\")\n",
" questions = [\n",
" re.sub(r\"^\\d+[\\).\\s]\", \"\", question).strip() for question in result\n",
" ]\n",
" questions = [question for question in questions if len(question) > 0][\n",
" :num_questions_per_chunk\n",
" ]\n",
"\n",
" num_questions_generated = len(questions)\n",
" if num_questions_generated < num_questions_per_chunk:\n",
" warnings.warn(\n",
" f\"Fewer questions generated ({num_questions_generated}) \"\n",
" f\"than requested ({num_questions_per_chunk}).\"\n",
" )\n",
"\n",
" for question in questions:\n",
" question_id = str(uuid.uuid4())\n",
" queries[question_id] = question\n",
" relevant_docs[question_id] = [node_id]\n",
"\n",
" await asyncio.sleep(delay)\n",
"\n",
" # Use asyncio.gather to process nodes concurrently\n",
" await async_tqdm.gather(\n",
" *[process_node(node_id, text) for node_id, text in node_dict.items()]\n",
" )\n",
"\n",
" # construct dataset\n",
" return EmbeddingQAFinetuneDataset(\n",
" queries=queries, corpus=node_dict, relevant_docs=relevant_docs\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pickle\n",
"\n",
"\n",
"async def generate_questions(path, source_name):\n",
" nodes = []\n",
" with open(path, \"rb\") as f:\n",
" document_dict = pickle.load(f)\n",
" for doc_id in document_dict.keys():\n",
" doc: Document = document_dict[doc_id]\n",
" if doc.metadata[\"tokens\"] >= 100_000:\n",
" print(\"skipping\", doc.metadata[\"tokens\"])\n",
" continue\n",
" node = TextNode(text=doc.text, metadata=doc.metadata, id_=doc_id)\n",
" nodes.append(node)\n",
"\n",
" rag_eval_dataset: EmbeddingQAFinetuneDataset = await generate_qa_embedding_pairs(\n",
" nodes,\n",
" llm=llm,\n",
" num_questions_per_chunk=1,\n",
" qa_generate_prompt_tmpl=STUDENT_AI_QUESTIONS_GENERATE_PROMPT_TMPL,\n",
" max_concurrent=20, # Adjust this to control concurrency\n",
" delay=0.5, # Adjust this to add delay between API calls\n",
" )\n",
" rag_eval_dataset.save_json(f\"./rag_eval_{source_name}.json\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# await generate_questions(\n",
"# \"../data/chroma-db-langchain/document_dict_langchain.pkl\", \"langchain\"\n",
"# )\n",
"# await generate_questions(\n",
"# \"../data/chroma-db-llama_index/document_dict_llama_index.pkl\", \"llama_index\"\n",
"# )\n",
"# await generate_questions(\n",
"# \"../data/chroma-db-openai_cookbooks/document_dict_openai_cookbooks.pkl\",\n",
"# \"openai_cookbooks\",\n",
"# )\n",
"# await generate_questions(\"../data/chroma-db-peft/document_dict_peft.pkl\", \"peft\")\n",
"# await generate_questions(\"../data/chroma-db-trl/document_dict_trl.pkl\", \"trl\")\n",
"\n",
"await generate_questions(\n",
" \"../data/chroma-db-tai_blog/document_dict_tai_blog.pkl\", \"tai_blog\"\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# # We can also load the dataset from a previously saved json file.\n",
"# from llama_index.core.evaluation import EmbeddingQAFinetuneDataset\n",
"\n",
"# rag_eval_dataset = EmbeddingQAFinetuneDataset.from_json(\"./rag_eval_transformers.json\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "env",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|