File size: 21,773 Bytes
57bdef8
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
e55b1d2
57bdef8
de7d661
e55b1d2
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de7d661
57bdef8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "toc_visible": true,
      "authorship_tag": "ABX9TyOUem37lhhg0mJYauho+pvb",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/Crawl_a_Website.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "!pip install -q llama-index==0.10.30 openai==1.12.0 cohere==4.47 tiktoken==0.6.0 newspaper3k==0.2.8"
      ],
      "metadata": {
        "id": "4CW8ux1RSdem",
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "outputId": "155feab4-8ae6-43da-a07f-8a1f4b677c2b"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m211.1/211.1 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m81.3/81.3 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m97.6/97.6 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m43.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for tinysegmenter (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for feedfinder2 (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for jieba3k (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Building wheel for sgmllib3k (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "\n",
        "# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
        "os.environ[\"OPENAI_API_KEY\"] = \"[OPENAI_API_KEY]\"\n",
        "USESCRAPER_API_KEY = \"[USESCRAPER_API_KEY]\""
      ],
      "metadata": {
        "id": "wxDPsVXSAj6_"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "There are two primary methods for extracting webpage content. The first method involves having a list of URLs; one can iterate through this list to retrieve the content of each page. The second method, web crawling, requires using a script or service to extract page URLs from a sitemap or manually following links on the page to access all the content. Initially, we will explore web scraping techniques before discussing how to use a service like usescraper.com to perform web crawling."
      ],
      "metadata": {
        "id": "VSc7-1mljmrp"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "# 1. Scraping using `newspaper` Library"
      ],
      "metadata": {
        "id": "D3r2tYHgeIK9"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Define URLs"
      ],
      "metadata": {
        "id": "it43ZQf8jatw"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "urls = [\n",
        "    \"https://docs.llamaindex.ai/en/stable/understanding\",\n",
        "    \"https://docs.llamaindex.ai/en/stable/understanding/using_llms/using_llms/\",\n",
        "    \"https://docs.llamaindex.ai/en/stable/understanding/indexing/indexing/\",\n",
        "    \"https://docs.llamaindex.ai/en/stable/understanding/querying/querying/\"\n",
        "]"
      ],
      "metadata": {
        "id": "x74PqfQ7eIzD"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Get Page Contents"
      ],
      "metadata": {
        "id": "tgxfpfSsjcMC"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import newspaper\n",
        "\n",
        "pages_content = []\n",
        "\n",
        "# Retrieve the Content\n",
        "for url in urls:\n",
        "\ttry:\n",
        "\t\tarticle = newspaper.Article( url )\n",
        "\t\tarticle.download()\n",
        "\t\tarticle.parse()\n",
        "\t\tif len(article.text) > 0:\n",
        "\t\t\tpages_content.append({ \"url\": url, \"title\": article.title, \"text\": article.text })\n",
        "\texcept:\n",
        "\t\tcontinue"
      ],
      "metadata": {
        "id": "Q6Xs1OhUfVQV"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "pages_content[0]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "3cNdJNi2g1ly",
        "outputId": "f5184c15-6b55-47ee-98ee-646a06290a4c"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "{'url': 'https://docs.llamaindex.ai/en/stable/understanding',\n",
              " 'title': 'Building an LLM Application',\n",
              " 'text': \"Building an LLM application#\\n\\nWelcome to the beginning of Understanding LlamaIndex. This is a series of short, bite-sized tutorials on every stage of building an LLM application to get you acquainted with how to use LlamaIndex before diving into more advanced and subtle strategies. If you're an experienced programmer new to LlamaIndex, this is the place to start.\\n\\nKey steps in building an LLM application#\\n\\nTip If you've already read our high-level concepts page you'll recognize several of these steps.\\n\\nThere are a series of key steps involved in building any LLM-powered application, whether it's answering questions about your data, creating a chatbot, or an autonomous agent. Throughout our documentation, you'll notice sections are arranged roughly in the order you'll perform these steps while building your app. You'll learn about:\\n\\nUsing LLMs : whether it's OpenAI or any number of hosted LLMs or a locally-run model of your own, LLMs are used at every step of the way, from indexing and storing to querying and parsing your data. LlamaIndex comes with a huge number of reliable, tested prompts and we'll also show you how to customize your own.\\n\\nLoading : getting your data from wherever it lives, whether that's unstructured text, PDFs, databases, or APIs to other applications. LlamaIndex has hundreds of connectors to every data source over at LlamaHub.\\n\\nIndexing : once you've got your data there are an infinite number of ways to structure access to that data to ensure your applications is always working with the most relevant data. LlamaIndex has a huge number of these strategies built-in and can help you select the best ones.\\n\\nStoring : you will probably find it more efficient to store your data in indexed form, or pre-processed summaries provided by an LLM, often in a specialized database known as a Vector Store (see below). You can also store your indexes, metadata and more.\\n\\nQuerying : every indexing strategy has a corresponding querying strategy and there are lots of ways to improve the relevance, speed and accuracy of what you retrieve and what the LLM does with it before returning it to you, including turning it into structured responses such as an API.\\n\\nPutting it all together : whether you are building question & answering, chatbots, an API, or an autonomous agent, we show you how to get your application into production.\\n\\nTracing and debugging : also called observability , it's especially important with LLM applications to be able to look into the inner workings of what's going on to help you debug problems and spot places to improve.\\n\\nEvaluating: every strategy has pros and cons and a key part of building, shipping and evolving your application is evaluating whether your change has improved your application in terms of accuracy, performance, clarity, cost and more. Reliably evaluating your changes is a crucial part of LLM application development.\\n\\nReady to dive in? Head to using LLMs.\"}"
            ]
          },
          "metadata": {},
          "execution_count": 57
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "len( pages_content )"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "WleP60A3gkQM",
        "outputId": "8c79ab53-e47b-4227-eb6f-0286b8ba2d15"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "5"
            ]
          },
          "metadata": {},
          "execution_count": 38
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Convert to Document"
      ],
      "metadata": {
        "id": "i5mCiRfGjfNx"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core.schema import Document\n",
        "\n",
        "# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
        "documents = [Document(text=row['text'], metadata={\"title\": row['title'], \"url\": row['url']}) for row in pages_content]"
      ],
      "metadata": {
        "id": "TOJ3K-CBfVDR"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# 2. Submit the Crawler Job"
      ],
      "metadata": {
        "id": "CkjEyEmkJevT"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "tYpchBo5-brp",
        "outputId": "927f84c5-c13a-408c-8802-df90bc05c733"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "{'org': '581', 'id': '7YE3T8VSPJVSCYE6EDQ90DJNFT', 'urls': ['https://docs.llamaindex.ai/en/stable/understanding/'], 'exclude_globs': [], 'exclude_elements': 'nav, header, footer, script, style, noscript, svg, [role=\"alert\"], [role=\"banner\"], [role=\"dialog\"], [role=\"alertdialog\"], [role=\"region\"][aria-label*=\"skip\" i], [aria-modal=\"true\"]', 'output_format': 'markdown', 'output_expiry': 604800, 'min_length': 50, 'page_limit': 10000, 'force_crawling_mode': 'link', 'block_resources': True, 'include_linked_files': False, 'createdAt': 1713883978029, 'status': 'starting', 'use_browser': True, 'sitemapPageCount': 0, 'notices': []}\n"
          ]
        }
      ],
      "source": [
        "import requests\n",
        "import json\n",
        "\n",
        "payload = {\n",
        "    \"urls\": [\"https://docs.llamaindex.ai/en/stable/understanding/\"], # list of urls to crawl\n",
        "    \"output_format\": \"markdown\", # text, html, markdown\n",
        "    \"output_expiry\": 604800, # Automatically delete after X seconds\n",
        "    \"min_length\": 50, # Skip pages with less than X characters\n",
        "    \"page_limit\": 10000, # Maximum number of pages to crawl\n",
        "    \"force_crawling_mode\": \"link\", # \"link\" follows links in the page reccursively, or \"sitemap\" to find pages from website's sitemap\n",
        "    \"block_resources\": True, # skip loading images, stylesheets, or scripts\n",
        "    \"include_linked_files\": False # include files (PDF, text, ...) in output\n",
        "}\n",
        "headers = {\n",
        "    \"Authorization\": \"Bearer \" + USESCRAPER_API_KEY,\n",
        "    \"Content-Type\": \"application/json\"\n",
        "}\n",
        "\n",
        "response = requests.request(\"POST\", \"https://api.usescraper.com/crawler/jobs\", json=payload, headers=headers)\n",
        "\n",
        "response = json.loads( response.text )\n",
        "\n",
        "print(response)"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Get the Status"
      ],
      "metadata": {
        "id": "nx_4MjHxJgxh"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "url = \"https://api.usescraper.com/crawler/jobs/{}\".format(response['id'])\n",
        "\n",
        "status_res = requests.request(\"GET\", url, headers=headers)\n",
        "\n",
        "status_res = json.loads( status_res.text )\n",
        "\n",
        "print( status_res['status'] )\n",
        "print( status_res['progress'] )"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ZLJ0BUR8c1a8",
        "outputId": "cfd3aee9-68bf-4171-9340-abe2d03fa5ac"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "running\n",
            "{'scraped': 9, 'discarded': 0, 'failed': 0}\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Get the Data"
      ],
      "metadata": {
        "id": "vHcRJIDsJh2i"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "url = \"https://api.usescraper.com/crawler/jobs/{}/data\".format(response['id'])\n",
        "\n",
        "data_res = requests.request(\"GET\", url, headers=headers)\n",
        "\n",
        "data_res = json.loads( data_res.text )\n",
        "\n",
        "print( data_res )"
      ],
      "metadata": {
        "id": "J4dUn4cmGGab"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "print( \"URL:\", data_res['data'][0]['meta']['url'] )\n",
        "print( \"Title:\", data_res['data'][0]['meta']['meta']['title'] )\n",
        "print( \"Content:\", data_res['data'][0]['text'][0:500], \"...\" )"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "F8VEQvJkITLJ",
        "outputId": "b54ec108-7221-4230-8b61-d0a4be503a66"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "URL: https://docs.llamaindex.ai/en/stable/understanding/putting_it_all_together/graphs/\n",
            "Title: Knowledge Graphs - LlamaIndex\n",
            "Content:  \n",
            "[ Skip to content ](https://docs.llamaindex.ai/en/stable/understanding/putting_it_all_together/graphs/#knowledge-graphs)\n",
            "#Knowledge Graphs[#](https://docs.llamaindex.ai/en/stable/understanding/putting_it_all_together/graphs/#knowledge-graphs)\n",
            "LlamaIndex contains some fantastic guides for building with knowledge graphs.\n",
            "\n",
            "Check out the end-to-end tutorials/workshops below. Also check out our [knowledge graph query engine guides](https://docs.llamaindex.ai/en/stable/module_guides/deploying/query_ ...\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Convert to Document"
      ],
      "metadata": {
        "id": "rt2nyuLhSYLR"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core.schema import Document\n",
        "\n",
        "# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
        "documents = [Document(text=row['text'], metadata={\"title\": row['meta']['meta']['title'], \"url\": row['meta']['url']}) for row in data_res['data']]"
      ],
      "metadata": {
        "id": "YEieGzSFSXas"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Create RAG Pipeline"
      ],
      "metadata": {
        "id": "vqbJG5a1i3Jo"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.llms.openai import OpenAI\n",
        "\n",
        "llm = OpenAI(model=\"gpt-3.5-turbo\")"
      ],
      "metadata": {
        "id": "wxmiQDv3SXV6"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.embeddings.openai import OpenAIEmbedding\n",
        "\n",
        "embed_model = OpenAIEmbedding(model=\"text-embedding-3-large\")"
      ],
      "metadata": {
        "id": "tCVhv4OkSXTV"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core.node_parser import SentenceSplitter\n",
        "\n",
        "text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=30)"
      ],
      "metadata": {
        "id": "quwJI61dNVr-"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core import Settings\n",
        "\n",
        "Settings.llm = llm\n",
        "Settings.embed_model = embed_model\n",
        "Settings.text_splitter = text_splitter"
      ],
      "metadata": {
        "id": "6KpeCRMBUgup"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core import VectorStoreIndex\n",
        "\n",
        "index = VectorStoreIndex.from_documents( documents )"
      ],
      "metadata": {
        "id": "nWTBidwoZSO0"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "query_engine = index.as_query_engine()"
      ],
      "metadata": {
        "id": "RUuJO0IIYSeU"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "res = query_engine.query(\"What is a query engine?\")"
      ],
      "metadata": {
        "id": "6_s2LkH6YX1V"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "res.response"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 71
        },
        "id": "02zdJNqIZKep",
        "outputId": "76340610-0d98-4fd0-d237-ddb9f1752391"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'A query engine is a fundamental component used in querying processes. It is responsible for retrieving the most relevant documents from an index based on a query, postprocessing the retrieved nodes if needed, and then synthesizing a response by combining the query, relevant data, and prompt to be sent to the language model for generating an answer.'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 28
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# Show the retrieved nodes\n",
        "for src in res.source_nodes:\n",
        "  print(\"Node ID\\t\", src.node_id)\n",
        "  print(\"Title\\t\", src.metadata['title'])\n",
        "  print(\"URL\\t\", src.metadata['url'])\n",
        "  print(\"Score\\t\", src.score)\n",
        "  print(\"-_\"*20)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "PuCcgP0nZSIl",
        "outputId": "e136cdbb-2ee4-4dfb-f532-f6c9365e519e"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Node ID\t 081b6c8c-d9ea-4476-bac0-1008facd3db8\n",
            "Title\t Querying - LlamaIndex\n",
            "URL\t https://docs.llamaindex.ai/en/stable/understanding/querying/querying/\n",
            "Score\t 0.46212738505767387\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t 3786c195-c5de-4bba-98b6-996031349a88\n",
            "Title\t Querying - LlamaIndex\n",
            "URL\t https://docs.llamaindex.ai/en/stable/understanding/querying/querying/\n",
            "Score\t 0.43141762602042416\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
          ]
        }
      ]
    }
  ]
}