File size: 21,773 Bytes
57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 e55b1d2 57bdef8 de7d661 e55b1d2 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 de7d661 57bdef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"toc_visible": true,
"authorship_tag": "ABX9TyOUem37lhhg0mJYauho+pvb",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/Crawl_a_Website.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"source": [
"!pip install -q llama-index==0.10.30 openai==1.12.0 cohere==4.47 tiktoken==0.6.0 newspaper3k==0.2.8"
],
"metadata": {
"id": "4CW8ux1RSdem",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "155feab4-8ae6-43da-a07f-8a1f4b677c2b"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m211.1/211.1 kB\u001b[0m \u001b[31m4.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m81.3/81.3 kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m97.6/97.6 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m7.4/7.4 MB\u001b[0m \u001b[31m43.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Building wheel for tinysegmenter (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Building wheel for feedfinder2 (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Building wheel for jieba3k (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Building wheel for sgmllib3k (setup.py) ... \u001b[?25l\u001b[?25hdone\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import os\n",
"\n",
"# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
"os.environ[\"OPENAI_API_KEY\"] = \"[OPENAI_API_KEY]\"\n",
"USESCRAPER_API_KEY = \"[USESCRAPER_API_KEY]\""
],
"metadata": {
"id": "wxDPsVXSAj6_"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"There are two primary methods for extracting webpage content. The first method involves having a list of URLs; one can iterate through this list to retrieve the content of each page. The second method, web crawling, requires using a script or service to extract page URLs from a sitemap or manually following links on the page to access all the content. Initially, we will explore web scraping techniques before discussing how to use a service like usescraper.com to perform web crawling."
],
"metadata": {
"id": "VSc7-1mljmrp"
}
},
{
"cell_type": "markdown",
"source": [
"# 1. Scraping using `newspaper` Library"
],
"metadata": {
"id": "D3r2tYHgeIK9"
}
},
{
"cell_type": "markdown",
"source": [
"## Define URLs"
],
"metadata": {
"id": "it43ZQf8jatw"
}
},
{
"cell_type": "code",
"source": [
"urls = [\n",
" \"https://docs.llamaindex.ai/en/stable/understanding\",\n",
" \"https://docs.llamaindex.ai/en/stable/understanding/using_llms/using_llms/\",\n",
" \"https://docs.llamaindex.ai/en/stable/understanding/indexing/indexing/\",\n",
" \"https://docs.llamaindex.ai/en/stable/understanding/querying/querying/\"\n",
"]"
],
"metadata": {
"id": "x74PqfQ7eIzD"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"## Get Page Contents"
],
"metadata": {
"id": "tgxfpfSsjcMC"
}
},
{
"cell_type": "code",
"source": [
"import newspaper\n",
"\n",
"pages_content = []\n",
"\n",
"# Retrieve the Content\n",
"for url in urls:\n",
"\ttry:\n",
"\t\tarticle = newspaper.Article( url )\n",
"\t\tarticle.download()\n",
"\t\tarticle.parse()\n",
"\t\tif len(article.text) > 0:\n",
"\t\t\tpages_content.append({ \"url\": url, \"title\": article.title, \"text\": article.text })\n",
"\texcept:\n",
"\t\tcontinue"
],
"metadata": {
"id": "Q6Xs1OhUfVQV"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"pages_content[0]"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3cNdJNi2g1ly",
"outputId": "f5184c15-6b55-47ee-98ee-646a06290a4c"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"{'url': 'https://docs.llamaindex.ai/en/stable/understanding',\n",
" 'title': 'Building an LLM Application',\n",
" 'text': \"Building an LLM application#\\n\\nWelcome to the beginning of Understanding LlamaIndex. This is a series of short, bite-sized tutorials on every stage of building an LLM application to get you acquainted with how to use LlamaIndex before diving into more advanced and subtle strategies. If you're an experienced programmer new to LlamaIndex, this is the place to start.\\n\\nKey steps in building an LLM application#\\n\\nTip If you've already read our high-level concepts page you'll recognize several of these steps.\\n\\nThere are a series of key steps involved in building any LLM-powered application, whether it's answering questions about your data, creating a chatbot, or an autonomous agent. Throughout our documentation, you'll notice sections are arranged roughly in the order you'll perform these steps while building your app. You'll learn about:\\n\\nUsing LLMs : whether it's OpenAI or any number of hosted LLMs or a locally-run model of your own, LLMs are used at every step of the way, from indexing and storing to querying and parsing your data. LlamaIndex comes with a huge number of reliable, tested prompts and we'll also show you how to customize your own.\\n\\nLoading : getting your data from wherever it lives, whether that's unstructured text, PDFs, databases, or APIs to other applications. LlamaIndex has hundreds of connectors to every data source over at LlamaHub.\\n\\nIndexing : once you've got your data there are an infinite number of ways to structure access to that data to ensure your applications is always working with the most relevant data. LlamaIndex has a huge number of these strategies built-in and can help you select the best ones.\\n\\nStoring : you will probably find it more efficient to store your data in indexed form, or pre-processed summaries provided by an LLM, often in a specialized database known as a Vector Store (see below). You can also store your indexes, metadata and more.\\n\\nQuerying : every indexing strategy has a corresponding querying strategy and there are lots of ways to improve the relevance, speed and accuracy of what you retrieve and what the LLM does with it before returning it to you, including turning it into structured responses such as an API.\\n\\nPutting it all together : whether you are building question & answering, chatbots, an API, or an autonomous agent, we show you how to get your application into production.\\n\\nTracing and debugging : also called observability , it's especially important with LLM applications to be able to look into the inner workings of what's going on to help you debug problems and spot places to improve.\\n\\nEvaluating: every strategy has pros and cons and a key part of building, shipping and evolving your application is evaluating whether your change has improved your application in terms of accuracy, performance, clarity, cost and more. Reliably evaluating your changes is a crucial part of LLM application development.\\n\\nReady to dive in? Head to using LLMs.\"}"
]
},
"metadata": {},
"execution_count": 57
}
]
},
{
"cell_type": "code",
"source": [
"len( pages_content )"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "WleP60A3gkQM",
"outputId": "8c79ab53-e47b-4227-eb6f-0286b8ba2d15"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"5"
]
},
"metadata": {},
"execution_count": 38
}
]
},
{
"cell_type": "markdown",
"source": [
"## Convert to Document"
],
"metadata": {
"id": "i5mCiRfGjfNx"
}
},
{
"cell_type": "code",
"source": [
"from llama_index.core.schema import Document\n",
"\n",
"# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
"documents = [Document(text=row['text'], metadata={\"title\": row['title'], \"url\": row['url']}) for row in pages_content]"
],
"metadata": {
"id": "TOJ3K-CBfVDR"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# 2. Submit the Crawler Job"
],
"metadata": {
"id": "CkjEyEmkJevT"
}
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "tYpchBo5-brp",
"outputId": "927f84c5-c13a-408c-8802-df90bc05c733"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"{'org': '581', 'id': '7YE3T8VSPJVSCYE6EDQ90DJNFT', 'urls': ['https://docs.llamaindex.ai/en/stable/understanding/'], 'exclude_globs': [], 'exclude_elements': 'nav, header, footer, script, style, noscript, svg, [role=\"alert\"], [role=\"banner\"], [role=\"dialog\"], [role=\"alertdialog\"], [role=\"region\"][aria-label*=\"skip\" i], [aria-modal=\"true\"]', 'output_format': 'markdown', 'output_expiry': 604800, 'min_length': 50, 'page_limit': 10000, 'force_crawling_mode': 'link', 'block_resources': True, 'include_linked_files': False, 'createdAt': 1713883978029, 'status': 'starting', 'use_browser': True, 'sitemapPageCount': 0, 'notices': []}\n"
]
}
],
"source": [
"import requests\n",
"import json\n",
"\n",
"payload = {\n",
" \"urls\": [\"https://docs.llamaindex.ai/en/stable/understanding/\"], # list of urls to crawl\n",
" \"output_format\": \"markdown\", # text, html, markdown\n",
" \"output_expiry\": 604800, # Automatically delete after X seconds\n",
" \"min_length\": 50, # Skip pages with less than X characters\n",
" \"page_limit\": 10000, # Maximum number of pages to crawl\n",
" \"force_crawling_mode\": \"link\", # \"link\" follows links in the page reccursively, or \"sitemap\" to find pages from website's sitemap\n",
" \"block_resources\": True, # skip loading images, stylesheets, or scripts\n",
" \"include_linked_files\": False # include files (PDF, text, ...) in output\n",
"}\n",
"headers = {\n",
" \"Authorization\": \"Bearer \" + USESCRAPER_API_KEY,\n",
" \"Content-Type\": \"application/json\"\n",
"}\n",
"\n",
"response = requests.request(\"POST\", \"https://api.usescraper.com/crawler/jobs\", json=payload, headers=headers)\n",
"\n",
"response = json.loads( response.text )\n",
"\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"source": [
"## Get the Status"
],
"metadata": {
"id": "nx_4MjHxJgxh"
}
},
{
"cell_type": "code",
"source": [
"url = \"https://api.usescraper.com/crawler/jobs/{}\".format(response['id'])\n",
"\n",
"status_res = requests.request(\"GET\", url, headers=headers)\n",
"\n",
"status_res = json.loads( status_res.text )\n",
"\n",
"print( status_res['status'] )\n",
"print( status_res['progress'] )"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZLJ0BUR8c1a8",
"outputId": "cfd3aee9-68bf-4171-9340-abe2d03fa5ac"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"running\n",
"{'scraped': 9, 'discarded': 0, 'failed': 0}\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"## Get the Data"
],
"metadata": {
"id": "vHcRJIDsJh2i"
}
},
{
"cell_type": "code",
"source": [
"url = \"https://api.usescraper.com/crawler/jobs/{}/data\".format(response['id'])\n",
"\n",
"data_res = requests.request(\"GET\", url, headers=headers)\n",
"\n",
"data_res = json.loads( data_res.text )\n",
"\n",
"print( data_res )"
],
"metadata": {
"id": "J4dUn4cmGGab"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"print( \"URL:\", data_res['data'][0]['meta']['url'] )\n",
"print( \"Title:\", data_res['data'][0]['meta']['meta']['title'] )\n",
"print( \"Content:\", data_res['data'][0]['text'][0:500], \"...\" )"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "F8VEQvJkITLJ",
"outputId": "b54ec108-7221-4230-8b61-d0a4be503a66"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"URL: https://docs.llamaindex.ai/en/stable/understanding/putting_it_all_together/graphs/\n",
"Title: Knowledge Graphs - LlamaIndex\n",
"Content: \n",
"[ Skip to content ](https://docs.llamaindex.ai/en/stable/understanding/putting_it_all_together/graphs/#knowledge-graphs)\n",
"#Knowledge Graphs[#](https://docs.llamaindex.ai/en/stable/understanding/putting_it_all_together/graphs/#knowledge-graphs)\n",
"LlamaIndex contains some fantastic guides for building with knowledge graphs.\n",
"\n",
"Check out the end-to-end tutorials/workshops below. Also check out our [knowledge graph query engine guides](https://docs.llamaindex.ai/en/stable/module_guides/deploying/query_ ...\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"## Convert to Document"
],
"metadata": {
"id": "rt2nyuLhSYLR"
}
},
{
"cell_type": "code",
"source": [
"from llama_index.core.schema import Document\n",
"\n",
"# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
"documents = [Document(text=row['text'], metadata={\"title\": row['meta']['meta']['title'], \"url\": row['meta']['url']}) for row in data_res['data']]"
],
"metadata": {
"id": "YEieGzSFSXas"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Create RAG Pipeline"
],
"metadata": {
"id": "vqbJG5a1i3Jo"
}
},
{
"cell_type": "code",
"source": [
"from llama_index.llms.openai import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-3.5-turbo\")"
],
"metadata": {
"id": "wxmiQDv3SXV6"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
"\n",
"embed_model = OpenAIEmbedding(model=\"text-embedding-3-large\")"
],
"metadata": {
"id": "tCVhv4OkSXTV"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from llama_index.core.node_parser import SentenceSplitter\n",
"\n",
"text_splitter = SentenceSplitter(chunk_size=512, chunk_overlap=30)"
],
"metadata": {
"id": "quwJI61dNVr-"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from llama_index.core import Settings\n",
"\n",
"Settings.llm = llm\n",
"Settings.embed_model = embed_model\n",
"Settings.text_splitter = text_splitter"
],
"metadata": {
"id": "6KpeCRMBUgup"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from llama_index.core import VectorStoreIndex\n",
"\n",
"index = VectorStoreIndex.from_documents( documents )"
],
"metadata": {
"id": "nWTBidwoZSO0"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"query_engine = index.as_query_engine()"
],
"metadata": {
"id": "RUuJO0IIYSeU"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"res = query_engine.query(\"What is a query engine?\")"
],
"metadata": {
"id": "6_s2LkH6YX1V"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"res.response"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 71
},
"id": "02zdJNqIZKep",
"outputId": "76340610-0d98-4fd0-d237-ddb9f1752391"
},
"execution_count": null,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'A query engine is a fundamental component used in querying processes. It is responsible for retrieving the most relevant documents from an index based on a query, postprocessing the retrieved nodes if needed, and then synthesizing a response by combining the query, relevant data, and prompt to be sent to the language model for generating an answer.'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 28
}
]
},
{
"cell_type": "code",
"source": [
"# Show the retrieved nodes\n",
"for src in res.source_nodes:\n",
" print(\"Node ID\\t\", src.node_id)\n",
" print(\"Title\\t\", src.metadata['title'])\n",
" print(\"URL\\t\", src.metadata['url'])\n",
" print(\"Score\\t\", src.score)\n",
" print(\"-_\"*20)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "PuCcgP0nZSIl",
"outputId": "e136cdbb-2ee4-4dfb-f532-f6c9365e519e"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Node ID\t 081b6c8c-d9ea-4476-bac0-1008facd3db8\n",
"Title\t Querying - LlamaIndex\n",
"URL\t https://docs.llamaindex.ai/en/stable/understanding/querying/querying/\n",
"Score\t 0.46212738505767387\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t 3786c195-c5de-4bba-98b6-996031349a88\n",
"Title\t Querying - LlamaIndex\n",
"URL\t https://docs.llamaindex.ai/en/stable/understanding/querying/querying/\n",
"Score\t 0.43141762602042416\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
]
}
]
}
]
} |