File size: 105,044 Bytes
95cae2f
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
 
 
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
0bfedbd
95cae2f
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
 
 
 
 
 
95cae2f
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
0bfedbd
95cae2f
0bfedbd
 
 
95cae2f
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
 
 
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
 
 
 
 
 
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
 
 
 
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bfedbd
95cae2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "view-in-github"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/12-Improve_Query.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "-zE1h0uQV7uT"
      },
      "source": [
        "# Install Packages and Setup Variables\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "QPJzr-I9XQ7l",
        "outputId": "5d48c88b-a0a9-49ff-d788-e076d1cb4ead"
      },
      "outputs": [],
      "source": [
        "!pip install -q llama-index==0.10.57 openai==1.37.0 cohere==5.6.2 tiktoken==0.7.0 chromadb==0.5.5 html2text sentence_transformers pydantic llama-index-vector-stores-chroma==0.1.10 kaleido==0.2.1 llama-index-llms-gemini==0.1.11"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 15,
      "metadata": {
        "id": "riuXwpSPcvWC"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "\n",
        "# Set the following API Keys in the Python environment. Will be used later.\n",
        "os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_OPENAI_KEY>\"\n",
        "os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 14,
      "metadata": {
        "id": "jIEeZzqLbz0J"
      },
      "outputs": [],
      "source": [
        "# Allows running asyncio in environments with an existing event loop, like Jupyter notebooks.\n",
        "import nest_asyncio\n",
        "\n",
        "nest_asyncio.apply()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Bkgi2OrYzF7q"
      },
      "source": [
        "# Load a Model\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9oGT6crooSSj"
      },
      "outputs": [],
      "source": [
        "from llama_index.llms.gemini import Gemini\n",
        "\n",
        "llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=1, max_tokens=512)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0BwVuJXlzHVL"
      },
      "source": [
        "# Create a VectoreStore\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "SQP87lHczHKc"
      },
      "outputs": [],
      "source": [
        "import chromadb\n",
        "\n",
        "# create client and a new collection\n",
        "# chromadb.EphemeralClient saves data in-memory.\n",
        "chroma_client = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
        "chroma_collection = chroma_client.create_collection(\"mini-llama-articles\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "zAaGcYMJzHAN"
      },
      "outputs": [],
      "source": [
        "from llama_index.vector_stores.chroma import ChromaVectorStore\n",
        "\n",
        "# Define a storage context object using the created vector database.\n",
        "vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "I9JbAzFcjkpn"
      },
      "source": [
        "# Load the Dataset (CSV)\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ceveDuYdWCYk"
      },
      "source": [
        "## Download\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "eZwf6pv7WFmD"
      },
      "source": [
        "The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model. Read the dataset as a long string.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "wl_pbPvMlv1h",
        "outputId": "a453b612-20a8-4396-d22b-b19d2bc47816"
      },
      "outputs": [],
      "source": [
        "!curl -o ./mini-llama-articles.csv https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "VWBLtDbUWJfA"
      },
      "source": [
        "## Read File\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "0Q9sxuW0g3Gd",
        "outputId": "49b27d8a-1f96-4e8d-fa0f-27afbf2c395c"
      },
      "outputs": [],
      "source": [
        "import csv\n",
        "\n",
        "rows = []\n",
        "\n",
        "# Load the file as a JSON\n",
        "with open(\"./mini-llama-articles.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n",
        "    csv_reader = csv.reader(file)\n",
        "\n",
        "    for idx, row in enumerate(csv_reader):\n",
        "        if idx == 0:\n",
        "            continue\n",
        "            # Skip header row\n",
        "        rows.append(row)\n",
        "\n",
        "# The number of characters in the dataset.\n",
        "len(rows)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "S17g2RYOjmf2"
      },
      "source": [
        "# Convert to Document obj\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "YizvmXPejkJE"
      },
      "outputs": [],
      "source": [
        "from llama_index.core import Document\n",
        "\n",
        "# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
        "documents = [\n",
        "    Document(\n",
        "        text=row[1], metadata={\"title\": row[0], \"url\": row[2], \"source_name\": row[3]}\n",
        "    )\n",
        "    for row in rows\n",
        "]\n",
        "print(documents[0])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qjuLbmFuWsyl"
      },
      "source": [
        "# Transforming\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9z3t70DGWsjO"
      },
      "outputs": [],
      "source": [
        "from llama_index.core.text_splitter import TokenTextSplitter\n",
        "\n",
        "text_splitter = TokenTextSplitter(separator=\" \", chunk_size=512, chunk_overlap=128)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 331,
          "referenced_widgets": [
            "3fbabd8a8660461ba5e7bc08ef39139a",
            "df2365556ae242a2ab1a119f9a31a561",
            "5f4b9d32df8f446e858e4c289dc282f9",
            "5b588f83a15d42d9aca888e06bbd95ff",
            "ad073bca655540809e39f26538d2ec0d",
            "13b9c5395bca4c3ba21265240cb936cf",
            "47a4586384274577a726c57605e7f8d9",
            "96a3bdece738481db57e811ccb74a974",
            "5c7973afd79349ed997a69120d0629b2",
            "af9b6ae927dd4764b9692507791bc67e",
            "134210510d49476e959dd7d032bbdbdc",
            "5f9bb065c2b74d2e8ded32e1306a7807",
            "73a06bc546a64f7f99a9e4a135319dcd",
            "ce48deaf4d8c49cdae92bfdbb3a78df0",
            "4a172e8c6aa44e41a42fc1d9cf714fd0",
            "0245f2604e4d49c8bd0210302746c47b",
            "e956dfab55084a9cbe33c8e331b511e7",
            "cb394578badd43a89850873ad2526542",
            "193aef33d9184055bb9223f56d456de6",
            "abfc9aa911ce4a5ea81c7c451f08295f",
            "e7937a1bc68441a080374911a6563376",
            "e532ed7bfef34f67b5fcacd9534eb789"
          ]
        },
        "id": "P9LDJ7o-Wsc-",
        "outputId": "01070c1f-dffa-4ab7-ad71-b07b76b12e03"
      },
      "outputs": [],
      "source": [
        "from llama_index.core.extractors import (\n",
        "    SummaryExtractor,\n",
        "    QuestionsAnsweredExtractor,\n",
        "    KeywordExtractor,\n",
        ")\n",
        "from llama_index.embeddings.openai import OpenAIEmbedding\n",
        "from llama_index.core.ingestion import IngestionPipeline\n",
        "\n",
        "pipeline = IngestionPipeline(\n",
        "    transformations=[\n",
        "        text_splitter,\n",
        "        QuestionsAnsweredExtractor(questions=3, llm=llm),\n",
        "        SummaryExtractor(summaries=[\"prev\", \"self\"], llm=llm),\n",
        "        KeywordExtractor(keywords=10, llm=llm),\n",
        "        OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
        "    ],\n",
        "    vector_store=vector_store,\n",
        ")\n",
        "\n",
        "nodes = pipeline.run(documents=documents, show_progress=True)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "mPGa85hM2P3P",
        "outputId": "c106c463-2459-4b11-bbae-5bd5e2246011"
      },
      "outputs": [],
      "source": [
        "len(nodes)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "23x20bL3_jRb"
      },
      "outputs": [],
      "source": [
        "!zip -r vectorstore.zip mini-llama-articles"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "OWaT6rL7ksp8"
      },
      "source": [
        "# Load Indexes\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "SodY2Xpf_kxg",
        "outputId": "9f8b7153-ea58-4824-8363-c47e922612a8"
      },
      "outputs": [],
      "source": [
        "# !unzip vectorstore.zip"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "mXi56KTXk2sp"
      },
      "outputs": [],
      "source": [
        "import chromadb\n",
        "from llama_index.vector_stores.chroma import ChromaVectorStore\n",
        "\n",
        "# Create your index\n",
        "db = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
        "chroma_collection = db.get_or_create_collection(\"mini-llama-articles\")\n",
        "vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "id": "jKXURvLtkuTS"
      },
      "outputs": [],
      "source": [
        "# Create your index\n",
        "from llama_index.core import VectorStoreIndex\n",
        "\n",
        "vector_index = VectorStoreIndex.from_vector_store(vector_store)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {},
      "outputs": [],
      "source": [
        "from llama_index.embeddings.openai import OpenAIEmbedding\n",
        "\n",
        "llama_query_engine = vector_index.as_query_engine(\n",
        "    llm=llm,\n",
        "    similarity_top_k=3,\n",
        "    embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {},
      "outputs": [],
      "source": [
        "res = llama_query_engine.query(\"What is the LLama model?\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {},
      "outputs": [
        {
          "data": {
            "text/plain": [
              "'The Llama model is an open-source language model developed by Meta that is designed for commercial use. It comes in different sizes ranging from 7 billion to 70 billion parameters and is known for its efficiency and potential in the market. The model incorporates features like Ghost Attention, which enhances conversational continuity, and a groundbreaking temporal capability that organizes information based on time relevance for more contextually accurate responses.'"
            ]
          },
          "execution_count": 7,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "res.response"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 8,
      "metadata": {},
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Node ID\t 5c465508-45c6-4ae0-ae61-9d8c1e38e35c\n",
            "Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
            "Text\t with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2's impressive ability to compete with larger models highlights its efficiency and potential in the market. However, Llama 2 does face challenges in coding and math problems, where models like Chat GPT 4 excel, given their significantly larger size. Chat GPT 4 performed significantly better than Llama 2 for coding (HumanEval benchmark)and math problem tasks (GSM8k benchmark). Open-source AI technologies, like Llama 2, continue to advance, offering strong competition to closed-source models.  V. Ghost Attention: Enhancing Conversational Continuity One unique feature in Llama 2 is Ghost Attention, which ensures continuity in conversations. This means that even after multiple interactions, the model remembers its initial instructions, ensuring more coherent and consistent responses throughout the conversation. This feature significantly enhances the user experience and makes Llama 2 a more reliable language model for interactive applications. In the example below, on the left, it forgets to use an emoji after a few conversations. On the right, with Ghost Attention, even after having many conversations, it will remember the context and continue to use emojis in its response.  VI. Temporal Capability: A Leap in Information Organization Meta reported a groundbreaking temporal capability, where the model organizes information based on time relevance. Each question posed to the model is associated with a date, and it responds accordingly by considering the event date before which the question becomes irrelevant. For example, if you ask the question, \"How long ago did Barack Obama become president?\", its only relevant after 2008. This temporal awareness allows Llama 2 to deliver more contextually accurate responses, enriching the user experience further.  VII. Open Questions and Future Outlook Meta's open-sourcing of Llama 2 represents a seismic shift, now offering developers and researchers commercial access to a leading language model. With Llama 2 outperforming MosaicML's current MPT models, all eyes are on how Databricks will respond. Can MosaicML's next MPT iteration beat Llama 2? Is it worthwhile to compete\n",
            "Score\t 0.38925315073161093\n",
            "Metadata\t {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"1. How does Llama 2's Ghost Attention feature enhance conversational continuity in language models, and how does it compare to other models in terms of maintaining context throughout interactions?\\n2. In what specific areas do larger language models like Chat GPT 4 outperform Llama 2, and how does Llama 2's efficiency and potential in the market compare to these larger models?\\n3. How does Llama 2's groundbreaking temporal capability, which organizes information based on time relevance, contribute to delivering more contextually accurate responses and enriching the user experience in interactive applications?\", 'prev_section_summary': \"The section discusses Meta's Llama 2 model, highlighting its exceptional performance in safety benchmarks compared to ChatGPT. It addresses the challenges of balancing helpfulness and safety in optimizing language models and the importance of finding the right equilibrium. The model employs two reward models for helpfulness and safety to optimize responses. Llama 2 outperforms competitors in most categories, including Chat GPT 3.5, despite facing challenges in coding and math problems compared to larger models like Chat GPT 4. The section emphasizes the efficiency and potential of Llama 2 in the market.\", 'section_summary': \"The section discusses Meta's Llama 2, an open-source language model that is revolutionizing commercial use. It compares Llama 2 to larger models like Chat GPT 4, highlighting Llama 2's efficiency and potential in the market. The Ghost Attention feature in Llama 2 enhances conversational continuity, while its groundbreaking temporal capability organizes information based on time relevance for more contextually accurate responses. The section also mentions Meta's open-sourcing of Llama 2 and the competition with MosaicML's MPT models.\", 'excerpt_keywords': 'Meta, Llama 2, language model, commercial use, Ghost Attention, conversational continuity, temporal capability, open-source, MosaicML, Databricks'}\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t 591cd83e-904d-4d43-80e7-7ee0da879e17\n",
            "Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
            "Text\t I. Llama 2: Revolutionizing Commercial Use Unlike its predecessor Llama 1, which was limited to research use, Llama 2 represents a major advancement as an open-source commercial model. Businesses can now integrate Llama 2 into products to create AI-powered applications. Availability on Azure and AWS facilitates fine-tuning and adoption. However, restrictions apply to prevent exploitation. Companies with over 700 million active daily users cannot use Llama 2. Additionally, its output cannot be used to improve other language models.  II. Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. While 7B, 13B, and 70B have already been released, the 34B model is still awaited. The pretrained variant, trained on a whopping 2 trillion tokens, boasts a context window of 4096 tokens, twice the size of its predecessor Llama 1. Meta also released a Llama 2 fine-tuned model for chat applications that was trained on over 1 million human annotations. Such extensive training comes at a cost, with the 70B model taking a staggering 1720320 GPU hours to train. The context window's length determines the amount of content the model can process at once, making Llama 2 a powerful language model in terms of scale and efficiency.  III. Safety Considerations: A Top Priority for Meta Meta's commitment to safety and alignment shines through in Llama 2's design. The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model's practical applicability and user experience. Thus, achieving\n",
            "Score\t 0.379941233087065\n",
            "Metadata\t {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': '1. What are the different model sizes available for Llama 2 and how do they differ in terms of parameters and training time?\\n2. How does Meta prioritize safety considerations in the design of Llama 2, and how does it compare to other language models like ChatGPT in terms of AI safety violation percentages?\\n3. What restrictions apply to the commercial use of Llama 2, and why are companies with over 700 million active daily users prohibited from using it?', 'prev_section_summary': \"The section discusses Meta AI's Code Llama and its performance on coding benchmarks like HumanEval and MBPP. Code Llama outperformed other open-source code-centric Large Language Models and even its predecessor, Llama 2. Code Llama 34B achieved impressive scores on both benchmarks, positioning it as a significant player in the code LLM space. The results highlight Code Llama's potential to contribute to the advancement of open-source foundation models in various domains.\", 'section_summary': \"The section discusses Meta's Llama 2, an open-source commercial language model that allows businesses to integrate AI-powered applications. It mentions the different model sizes available (7B, 13B, 34B, and 70B parameters) and their training times. Safety considerations in the design of Llama 2 are highlighted, with a focus on AI safety violation percentages compared to other models like ChatGPT. Restrictions on commercial use, such as companies with over 700 million daily users being prohibited, are also mentioned.\", 'excerpt_keywords': 'Meta, Llama 2, open-source, commercial, language model, AI safety, model sizes, training time, restrictions, safety considerations'}\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t 75696ac1-a024-48d1-9ecb-56fb617c4d27\n",
            "Title\t Beyond GPT-4: What's New?\n",
            "Text\t LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. Meta's Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. Benchmarking revealed Llama 2's superior performance over most extant open-source chat models. Human-centric evaluations, focusing on safety and utility metrics, positioned Llama 2-Chat as a potential contender against proprietary, closed-source counterparts. The development trajectory of Llama 2 emphasized rigorous fine-tuning methodologies. Meta's transparent delineation of these processes aims to catalyze community-driven advancements in LLMs, underscoring a commitment to collaborative and responsible AI development. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model;Codel Llama - Python specialized for Python;and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions. Based on its benchmark testing, Code Llama outperformed state-of-the-art publicly available LLMs (except GPT-4) on code tasks. Llama 2, Llama 2-Chat, and Code Llama are key steps in LLM development but still have a way to go compared to GPT-4. Meta's open access and commitment to improving these models promise transparent and faster LLM progress in the future. Please refer to the LLM and Llama variants below:  From LLMs to Multimodal LLMs, like OpenAI's ChatGPT (GPT-3.5), primarily focus on understanding and generating human language. They've been instrumental in tasks like text generation, translation, and even creative writing. However, their scope is limited to text. Enter multimodal models like GPT-4. These are a new breed of AI models that can understand and generate not just text, but also images, sounds, and potentially other types of data. The term \"multimodal\" refers to their ability to process multiple modes or\n",
            "Score\t 0.37789586760841654\n",
            "Metadata\t {'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"1. How does Meta's Llama 2 compare to other open-source chat models in terms of performance and utility metrics?\\n2. What are the different models available in Code Llama and how do they outperform other publicly available LLMs on code tasks?\\n3. How do multimodal LLMs like GPT-4 differ from traditional LLMs in terms of their ability to process various types of data beyond text?\", 'section_summary': \"The section discusses Meta's Llama 2 and Code Llama, which are advanced language models that outperform other open-source chat models and LLMs on code tasks. It highlights the performance and utility metrics of Llama 2-Chat and Code Llama, emphasizing their potential in dialogue-centric applications and natural language instruction understanding. The section also introduces multimodal LLMs like GPT-4, which can process various types of data beyond text, such as images and sounds. It mentions Meta's commitment to transparent and collaborative AI development, aiming to accelerate progress in LLMs.\", 'excerpt_keywords': 'Meta, Llama 2, Code Llama, language models, open-source, chat models, GPT-4, multimodal, AI development, natural language understanding'}\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
          ]
        }
      ],
      "source": [
        "for src in res.source_nodes:\n",
        "    print(\"Node ID\\t\", src.node_id)\n",
        "    print(\"Title\\t\", src.metadata[\"title\"])\n",
        "    print(\"Text\\t\", src.text)\n",
        "    print(\"Score\\t\", src.score)\n",
        "    print(\"Metadata\\t\", src.metadata)\n",
        "    print(\"-_\" * 20)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "# Router\n",
        "\n",
        "Routers are modules that take in a user query and a set of β€œchoices” (defined by metadata), and returns one or more selected choices.\n",
        "\n",
        "They can be used for the following use cases and more:\n",
        "\n",
        "- Selecting the right data source among a diverse range of data sources\n",
        "\n",
        "- Deciding whether to do summarization (e.g. using summary index query engine) or semantic search (e.g. using vector index query engine)\n",
        "\n",
        "- Deciding whether to β€œtry” out a bunch of choices at once and combine the results (using multi-routing capabilities).\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {},
      "source": [
        "## Lets create a different query engine with Mistral AI information\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 9,
      "metadata": {},
      "outputs": [],
      "source": [
        "from pathlib import Path\n",
        "import requests\n",
        "\n",
        "wiki_titles = [\n",
        "    \"Mistral AI\",\n",
        "]\n",
        "\n",
        "data_path = Path(\"data_wiki\")\n",
        "\n",
        "for title in wiki_titles:\n",
        "    response = requests.get(\n",
        "        \"https://en.wikipedia.org/w/api.php\",\n",
        "        params={\n",
        "            \"action\": \"query\",\n",
        "            \"format\": \"json\",\n",
        "            \"titles\": title,\n",
        "            \"prop\": \"extracts\",\n",
        "            \"explaintext\": True,\n",
        "        },\n",
        "    ).json()\n",
        "    page = next(iter(response[\"query\"][\"pages\"].values()))\n",
        "    wiki_text = page[\"extract\"]\n",
        "\n",
        "    if not data_path.exists():\n",
        "        Path.mkdir(data_path)\n",
        "\n",
        "    with open(data_path / f\"mistral_ai.txt\", \"w\") as fp:\n",
        "        fp.write(wiki_text)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 12,
      "metadata": {},
      "outputs": [],
      "source": [
        "from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
        "\n",
        "documents = SimpleDirectoryReader(\"data_wiki\").load_data()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 11,
      "metadata": {},
      "outputs": [],
      "source": [
        "from llama_index.core.text_splitter import TokenTextSplitter\n",
        "\n",
        "text_splitter = TokenTextSplitter(separator=\" \", chunk_size=512, chunk_overlap=128)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 16,
      "metadata": {},
      "outputs": [
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:02<00:00,  1.12it/s]\n",
            "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:03<00:00,  1.01s/it]\n",
            "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:01<00:00,  2.72it/s]\n"
          ]
        }
      ],
      "source": [
        "from llama_index.core.extractors import (\n",
        "    SummaryExtractor,\n",
        "    QuestionsAnsweredExtractor,\n",
        "    KeywordExtractor,\n",
        ")\n",
        "from llama_index.embeddings.openai import OpenAIEmbedding\n",
        "from llama_index.core.ingestion import IngestionPipeline\n",
        "\n",
        "transformations = [\n",
        "    text_splitter,\n",
        "    QuestionsAnsweredExtractor(questions=3, llm=llm),\n",
        "    SummaryExtractor(summaries=[\"prev\", \"self\"], llm=llm),\n",
        "    KeywordExtractor(keywords=10, llm=llm),\n",
        "    OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
        "]\n",
        "\n",
        "mistral_index = VectorStoreIndex.from_documents(\n",
        "    documents=documents, llm=llm, transformations=transformations\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 17,
      "metadata": {},
      "outputs": [],
      "source": [
        "mistral_query = mistral_index.as_query_engine(\n",
        "    llm=llm,\n",
        "    similarity_top_k=2,\n",
        "    embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 18,
      "metadata": {},
      "outputs": [
        {
          "data": {
            "text/plain": [
              "Response(response='The Llama model is an open-source language model developed by Meta that is designed for commercial use. It comes in different sizes with varying parameters, such as 7 billion, 13 billion, 34 billion, and 70 billion parameters. The model is known for its efficiency and potential in the market, as well as its unique features like Ghost Attention for enhancing conversational continuity and a groundbreaking temporal capability for organizing information based on time relevance. The model prioritizes safety considerations in its design and aims to strike a balance between providing useful information and ensuring safety in its responses.', source_nodes=[NodeWithScore(node=TextNode(id_='5c465508-45c6-4ae0-ae61-9d8c1e38e35c', embedding=None, metadata={'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"1. How does Llama 2's Ghost Attention feature enhance conversational continuity in language models, and how does it compare to other models in terms of maintaining context throughout interactions?\\n2. In what specific areas do larger language models like Chat GPT 4 outperform Llama 2, and how does Llama 2's efficiency and potential in the market compare to these larger models?\\n3. How does Llama 2's groundbreaking temporal capability, which organizes information based on time relevance, contribute to delivering more contextually accurate responses and enriching the user experience in interactive applications?\", 'prev_section_summary': \"The section discusses Meta's Llama 2 model, highlighting its exceptional performance in safety benchmarks compared to ChatGPT. It addresses the challenges of balancing helpfulness and safety in optimizing language models and the importance of finding the right equilibrium. The model employs two reward models for helpfulness and safety to optimize responses. Llama 2 outperforms competitors in most categories, including Chat GPT 3.5, despite facing challenges in coding and math problems compared to larger models like Chat GPT 4. The section emphasizes the efficiency and potential of Llama 2 in the market.\", 'section_summary': \"The section discusses Meta's Llama 2, an open-source language model that is revolutionizing commercial use. It compares Llama 2 to larger models like Chat GPT 4, highlighting Llama 2's efficiency and potential in the market. The Ghost Attention feature in Llama 2 enhances conversational continuity, while its groundbreaking temporal capability organizes information based on time relevance for more contextually accurate responses. The section also mentions Meta's open-sourcing of Llama 2 and the competition with MosaicML's MPT models.\", 'excerpt_keywords': 'Meta, Llama 2, language model, commercial use, Ghost Attention, conversational continuity, temporal capability, open-source, MosaicML, Databricks'}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='9415c7fb-980e-4b05-8a01-598fdb670d51', node_type=<ObjectType.DOCUMENT: '4'>, metadata={'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai'}, hash='e6ccf4a15b6004889bce6ebb32f629bb1cc23e749e19e42315b4fbef80d6f7f7'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='48993d8b-597f-4f3c-95f9-88aa9ac4937a', node_type=<ObjectType.TEXT: '1'>, metadata={'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai'}, hash='21016e46f48473e7eb78a251049f3b0d50ad4386c11afc44ca52f78e51f6b63b'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='a5463b16-54d8-44fc-8eab-d68c000d801d', node_type=<ObjectType.TEXT: '1'>, metadata={}, hash='4983f7ecac4388385d62632d85de3372e3e01072fb3a76c8494d08e00ea131d4')}, text='with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2\\'s impressive ability to compete with larger models highlights its efficiency and potential in the market. However, Llama 2 does face challenges in coding and math problems, where models like Chat GPT 4 excel, given their significantly larger size. Chat GPT 4 performed significantly better than Llama 2 for coding (HumanEval benchmark)and math problem tasks (GSM8k benchmark). Open-source AI technologies, like Llama 2, continue to advance, offering strong competition to closed-source models.  V. Ghost Attention: Enhancing Conversational Continuity One unique feature in Llama 2 is Ghost Attention, which ensures continuity in conversations. This means that even after multiple interactions, the model remembers its initial instructions, ensuring more coherent and consistent responses throughout the conversation. This feature significantly enhances the user experience and makes Llama 2 a more reliable language model for interactive applications. In the example below, on the left, it forgets to use an emoji after a few conversations. On the right, with Ghost Attention, even after having many conversations, it will remember the context and continue to use emojis in its response.  VI. Temporal Capability: A Leap in Information Organization Meta reported a groundbreaking temporal capability, where the model organizes information based on time relevance. Each question posed to the model is associated with a date, and it responds accordingly by considering the event date before which the question becomes irrelevant. For example, if you ask the question, \"How long ago did Barack Obama become president?\", its only relevant after 2008. This temporal awareness allows Llama 2 to deliver more contextually accurate responses, enriching the user experience further.  VII. Open Questions and Future Outlook Meta\\'s open-sourcing of Llama 2 represents a seismic shift, now offering developers and researchers commercial access to a leading language model. With Llama 2 outperforming MosaicML\\'s current MPT models, all eyes are on how Databricks will respond. Can MosaicML\\'s next MPT iteration beat Llama 2? Is it worthwhile to compete', start_char_idx=3098, end_char_idx=5365, text_template='[Excerpt from document]\\n{metadata_str}\\nExcerpt:\\n-----\\n{content}\\n-----\\n', metadata_template='{key}: {value}', metadata_seperator='\\n'), score=0.38935121175730436), NodeWithScore(node=TextNode(id_='591cd83e-904d-4d43-80e7-7ee0da879e17', embedding=None, metadata={'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': '1. What are the different model sizes available for Llama 2 and how do they differ in terms of parameters and training time?\\n2. How does Meta prioritize safety considerations in the design of Llama 2, and how does it compare to other language models like ChatGPT in terms of AI safety violation percentages?\\n3. What restrictions apply to the commercial use of Llama 2, and why are companies with over 700 million active daily users prohibited from using it?', 'prev_section_summary': \"The section discusses Meta AI's Code Llama and its performance on coding benchmarks like HumanEval and MBPP. Code Llama outperformed other open-source code-centric Large Language Models and even its predecessor, Llama 2. Code Llama 34B achieved impressive scores on both benchmarks, positioning it as a significant player in the code LLM space. The results highlight Code Llama's potential to contribute to the advancement of open-source foundation models in various domains.\", 'section_summary': \"The section discusses Meta's Llama 2, an open-source commercial language model that allows businesses to integrate AI-powered applications. It mentions the different model sizes available (7B, 13B, 34B, and 70B parameters) and their training times. Safety considerations in the design of Llama 2 are highlighted, with a focus on AI safety violation percentages compared to other models like ChatGPT. Restrictions on commercial use, such as companies with over 700 million daily users being prohibited, are also mentioned.\", 'excerpt_keywords': 'Meta, Llama 2, open-source, commercial, language model, AI safety, model sizes, training time, restrictions, safety considerations'}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='9415c7fb-980e-4b05-8a01-598fdb670d51', node_type=<ObjectType.DOCUMENT: '4'>, metadata={'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai'}, hash='e6ccf4a15b6004889bce6ebb32f629bb1cc23e749e19e42315b4fbef80d6f7f7'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='e24ae919-6841-4d2a-9de8-fa1f21fccdb0', node_type=<ObjectType.TEXT: '1'>, metadata={'title': \"Inside Code Llama: Meta AI's Entrance in the Code LLM Space\", 'url': 'https://pub.towardsai.net/inside-code-llama-meta-ais-entrance-in-the-code-llm-space-9f286d13a48d#c9e0', 'source_name': 'towards_ai'}, hash='c917e7c1d461cfd5a352ef113b861068a94ecfb5e8bbafa87ba18a62ddac78fc'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='48993d8b-597f-4f3c-95f9-88aa9ac4937a', node_type=<ObjectType.TEXT: '1'>, metadata={}, hash='b2de317911947f177025ac692d38505bcd2e21efce0c47b8aba035a118592329')}, text='I. Llama 2: Revolutionizing Commercial Use Unlike its predecessor Llama 1, which was limited to research use, Llama 2 represents a major advancement as an open-source commercial model. Businesses can now integrate Llama 2 into products to create AI-powered applications. Availability on Azure and AWS facilitates fine-tuning and adoption. However, restrictions apply to prevent exploitation. Companies with over 700 million active daily users cannot use Llama 2. Additionally, its output cannot be used to improve other language models.  II. Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. While 7B, 13B, and 70B have already been released, the 34B model is still awaited. The pretrained variant, trained on a whopping 2 trillion tokens, boasts a context window of 4096 tokens, twice the size of its predecessor Llama 1. Meta also released a Llama 2 fine-tuned model for chat applications that was trained on over 1 million human annotations. Such extensive training comes at a cost, with the 70B model taking a staggering 1720320 GPU hours to train. The context window\\'s length determines the amount of content the model can process at once, making Llama 2 a powerful language model in terms of scale and efficiency.  III. Safety Considerations: A Top Priority for Meta Meta\\'s commitment to safety and alignment shines through in Llama 2\\'s design. The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model\\'s practical applicability and user experience. Thus, achieving', start_char_idx=0, end_char_idx=2192, text_template='[Excerpt from document]\\n{metadata_str}\\nExcerpt:\\n-----\\n{content}\\n-----\\n', metadata_template='{key}: {value}', metadata_seperator='\\n'), score=0.3847929535269605), NodeWithScore(node=TextNode(id_='48993d8b-597f-4f3c-95f9-88aa9ac4937a', embedding=None, metadata={'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"1. How does Meta's Llama 2 model compare to other open-source language models in terms of safety benchmarks and helpfulness optimization?\\n2. What challenges does Meta's Llama 2 face in coding and math problem tasks compared to larger models like Chat GPT 4?\\n3. How does Meta strike a balance between providing useful information and ensuring safety in the optimization of their language model responses?\", 'prev_section_summary': \"The section discusses Meta's Llama 2, an open-source commercial language model that allows businesses to integrate AI-powered applications. It mentions the different model sizes available (7B, 13B, 34B, and 70B parameters) and their training times. Safety considerations in the design of Llama 2 are highlighted, with a focus on AI safety violation percentages compared to other models like ChatGPT. Restrictions on commercial use, such as companies with over 700 million daily users being prohibited, are also mentioned.\", 'section_summary': \"The section discusses Meta's Llama 2 model, highlighting its exceptional performance in safety benchmarks compared to ChatGPT. It addresses the challenges of balancing helpfulness and safety in optimizing language models and the importance of finding the right equilibrium. The model employs two reward models for helpfulness and safety to optimize responses. Llama 2 outperforms competitors in most categories, including Chat GPT 3.5, despite facing challenges in coding and math problems compared to larger models like Chat GPT 4. The section emphasizes the efficiency and potential of Llama 2 in the market.\", 'excerpt_keywords': \"Meta's Llama 2, open-source, language model, safety benchmarks, helpfulness optimization, AI safety, balance, reward models, commercial use, efficiency, market potential\"}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='9415c7fb-980e-4b05-8a01-598fdb670d51', node_type=<ObjectType.DOCUMENT: '4'>, metadata={'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai'}, hash='e6ccf4a15b6004889bce6ebb32f629bb1cc23e749e19e42315b4fbef80d6f7f7'), <NodeRelationship.PREVIOUS: '2'>: RelatedNodeInfo(node_id='591cd83e-904d-4d43-80e7-7ee0da879e17', node_type=<ObjectType.TEXT: '1'>, metadata={'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai'}, hash='ef6b0c87b8bf3ddbefecf4435183fab26cf29d639026c121ad7c0583174d9fd1'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='5c465508-45c6-4ae0-ae61-9d8c1e38e35c', node_type=<ObjectType.TEXT: '1'>, metadata={}, hash='627450b75c4c166114c350eced1d49c353c30395937e58874f9a9d685075d79b')}, text='The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model\\'s practical applicability and user experience. Thus, achieving an optimum balance that allows the model to be both helpful and safe is of utmost importance. To strike the right balance between helpfulness and safety, Meta employed two reward models - one for helpfulness and another for safety - to optimize the model\\'s responses. The 34B parameter model has reported higher safety violations than other variants, possibly contributing to the delay in its release.  IV. Helpfulness Comparison: Llama 2 Outperforms Competitors Llama 2 emerges as a strong contender in the open-source language model arena, outperforming its competitors in most categories. The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding. Despite being smaller, Llam a2\\'s performance rivals that of Chat GPT 3.5, a significantly larger closed-source model. While GPT 4 and PalM-2-L, with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2\\'s impressive ability to compete with larger models highlights its efficiency and potential in the market. However, Llama 2 does face challenges in coding and math problems, where models like Chat GPT 4 excel, given their significantly larger size. Chat GPT 4 performed significantly better than Llama 2 for coding (HumanEval benchmark)and math problem tasks (GSM8k benchmark). Open-source AI technologies, like Llama 2, continue to advance, offering', start_char_idx=1437, end_char_idx=3675, text_template='[Excerpt from document]\\n{metadata_str}\\nExcerpt:\\n-----\\n{content}\\n-----\\n', metadata_template='{key}: {value}', metadata_seperator='\\n'), score=0.3793881839893325)], metadata={'5c465508-45c6-4ae0-ae61-9d8c1e38e35c': {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"1. How does Llama 2's Ghost Attention feature enhance conversational continuity in language models, and how does it compare to other models in terms of maintaining context throughout interactions?\\n2. In what specific areas do larger language models like Chat GPT 4 outperform Llama 2, and how does Llama 2's efficiency and potential in the market compare to these larger models?\\n3. How does Llama 2's groundbreaking temporal capability, which organizes information based on time relevance, contribute to delivering more contextually accurate responses and enriching the user experience in interactive applications?\", 'prev_section_summary': \"The section discusses Meta's Llama 2 model, highlighting its exceptional performance in safety benchmarks compared to ChatGPT. It addresses the challenges of balancing helpfulness and safety in optimizing language models and the importance of finding the right equilibrium. The model employs two reward models for helpfulness and safety to optimize responses. Llama 2 outperforms competitors in most categories, including Chat GPT 3.5, despite facing challenges in coding and math problems compared to larger models like Chat GPT 4. The section emphasizes the efficiency and potential of Llama 2 in the market.\", 'section_summary': \"The section discusses Meta's Llama 2, an open-source language model that is revolutionizing commercial use. It compares Llama 2 to larger models like Chat GPT 4, highlighting Llama 2's efficiency and potential in the market. The Ghost Attention feature in Llama 2 enhances conversational continuity, while its groundbreaking temporal capability organizes information based on time relevance for more contextually accurate responses. The section also mentions Meta's open-sourcing of Llama 2 and the competition with MosaicML's MPT models.\", 'excerpt_keywords': 'Meta, Llama 2, language model, commercial use, Ghost Attention, conversational continuity, temporal capability, open-source, MosaicML, Databricks'}, '591cd83e-904d-4d43-80e7-7ee0da879e17': {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': '1. What are the different model sizes available for Llama 2 and how do they differ in terms of parameters and training time?\\n2. How does Meta prioritize safety considerations in the design of Llama 2, and how does it compare to other language models like ChatGPT in terms of AI safety violation percentages?\\n3. What restrictions apply to the commercial use of Llama 2, and why are companies with over 700 million active daily users prohibited from using it?', 'prev_section_summary': \"The section discusses Meta AI's Code Llama and its performance on coding benchmarks like HumanEval and MBPP. Code Llama outperformed other open-source code-centric Large Language Models and even its predecessor, Llama 2. Code Llama 34B achieved impressive scores on both benchmarks, positioning it as a significant player in the code LLM space. The results highlight Code Llama's potential to contribute to the advancement of open-source foundation models in various domains.\", 'section_summary': \"The section discusses Meta's Llama 2, an open-source commercial language model that allows businesses to integrate AI-powered applications. It mentions the different model sizes available (7B, 13B, 34B, and 70B parameters) and their training times. Safety considerations in the design of Llama 2 are highlighted, with a focus on AI safety violation percentages compared to other models like ChatGPT. Restrictions on commercial use, such as companies with over 700 million daily users being prohibited, are also mentioned.\", 'excerpt_keywords': 'Meta, Llama 2, open-source, commercial, language model, AI safety, model sizes, training time, restrictions, safety considerations'}, '48993d8b-597f-4f3c-95f9-88aa9ac4937a': {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"1. How does Meta's Llama 2 model compare to other open-source language models in terms of safety benchmarks and helpfulness optimization?\\n2. What challenges does Meta's Llama 2 face in coding and math problem tasks compared to larger models like Chat GPT 4?\\n3. How does Meta strike a balance between providing useful information and ensuring safety in the optimization of their language model responses?\", 'prev_section_summary': \"The section discusses Meta's Llama 2, an open-source commercial language model that allows businesses to integrate AI-powered applications. It mentions the different model sizes available (7B, 13B, 34B, and 70B parameters) and their training times. Safety considerations in the design of Llama 2 are highlighted, with a focus on AI safety violation percentages compared to other models like ChatGPT. Restrictions on commercial use, such as companies with over 700 million daily users being prohibited, are also mentioned.\", 'section_summary': \"The section discusses Meta's Llama 2 model, highlighting its exceptional performance in safety benchmarks compared to ChatGPT. It addresses the challenges of balancing helpfulness and safety in optimizing language models and the importance of finding the right equilibrium. The model employs two reward models for helpfulness and safety to optimize responses. Llama 2 outperforms competitors in most categories, including Chat GPT 3.5, despite facing challenges in coding and math problems compared to larger models like Chat GPT 4. The section emphasizes the efficiency and potential of Llama 2 in the market.\", 'excerpt_keywords': \"Meta's Llama 2, open-source, language model, safety benchmarks, helpfulness optimization, AI safety, balance, reward models, commercial use, efficiency, market potential\"}, 'selector_result': MultiSelection(selections=[SingleSelection(index=0, reason='The LLama LLM is specifically mentioned in choice (1), indicating its relevance to questions about the LLama model.')])})"
            ]
          },
          "execution_count": 18,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "from llama_index.core.query_engine import RouterQueryEngine\n",
        "from llama_index.core.selectors import PydanticSingleSelector\n",
        "from llama_index.core.tools import QueryEngineTool\n",
        "from llama_index.core import VectorStoreIndex, SummaryIndex\n",
        "\n",
        "# initialize tools\n",
        "llama_tool = QueryEngineTool.from_defaults(\n",
        "    query_engine=llama_query_engine,\n",
        "    description=\"Useful for questions about the LLama LLM create by Meta\",\n",
        ")\n",
        "mistral_tool = QueryEngineTool.from_defaults(\n",
        "    query_engine=mistral_query,\n",
        "    description=\"Useful for questions about the Mistral LLM create by Mistral AI\",\n",
        ")\n",
        "\n",
        "# initialize router query engine (single selection, pydantic)\n",
        "query_engine = RouterQueryEngine(\n",
        "    selector=PydanticSingleSelector.from_defaults(),\n",
        "    query_engine_tools=[\n",
        "        llama_tool,\n",
        "        mistral_tool,\n",
        "    ],\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 19,
      "metadata": {},
      "outputs": [
        {
          "data": {
            "text/plain": [
              "'The LLama model is an open-source language model developed by Meta that is designed for commercial use. It comes in different model sizes, ranging from 7 billion to 70 billion parameters, each with varying training times. The model prioritizes safety considerations in its design, aiming to strike a balance between providing helpful information and ensuring safety in responses. LLama 2 features unique capabilities such as Ghost Attention, which enhances conversational continuity, and a groundbreaking temporal capability that organizes information based on time relevance for more contextually accurate responses.'"
            ]
          },
          "execution_count": 19,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "res = query_engine.query(\n",
        "    \"what is the LLama model?\",\n",
        ")\n",
        "res.response"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 20,
      "metadata": {},
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Node ID\t 5c465508-45c6-4ae0-ae61-9d8c1e38e35c\n",
            "Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
            "Text\t with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2's impressive ability to compete with larger models highlights its efficiency and potential in the market. However, Llama 2 does face challenges in coding and math problems, where models like Chat GPT 4 excel, given their significantly larger size. Chat GPT 4 performed significantly better than Llama 2 for coding (HumanEval benchmark)and math problem tasks (GSM8k benchmark). Open-source AI technologies, like Llama 2, continue to advance, offering strong competition to closed-source models.  V. Ghost Attention: Enhancing Conversational Continuity One unique feature in Llama 2 is Ghost Attention, which ensures continuity in conversations. This means that even after multiple interactions, the model remembers its initial instructions, ensuring more coherent and consistent responses throughout the conversation. This feature significantly enhances the user experience and makes Llama 2 a more reliable language model for interactive applications. In the example below, on the left, it forgets to use an emoji after a few conversations. On the right, with Ghost Attention, even after having many conversations, it will remember the context and continue to use emojis in its response.  VI. Temporal Capability: A Leap in Information Organization Meta reported a groundbreaking temporal capability, where the model organizes information based on time relevance. Each question posed to the model is associated with a date, and it responds accordingly by considering the event date before which the question becomes irrelevant. For example, if you ask the question, \"How long ago did Barack Obama become president?\", its only relevant after 2008. This temporal awareness allows Llama 2 to deliver more contextually accurate responses, enriching the user experience further.  VII. Open Questions and Future Outlook Meta's open-sourcing of Llama 2 represents a seismic shift, now offering developers and researchers commercial access to a leading language model. With Llama 2 outperforming MosaicML's current MPT models, all eyes are on how Databricks will respond. Can MosaicML's next MPT iteration beat Llama 2? Is it worthwhile to compete\n",
            "Score\t 0.3892941031727631\n",
            "Metadata\t {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"1. How does Llama 2's Ghost Attention feature enhance conversational continuity in language models, and how does it compare to other models in terms of maintaining context throughout interactions?\\n2. In what specific areas do larger language models like Chat GPT 4 outperform Llama 2, and how does Llama 2's efficiency and potential in the market compare to these larger models?\\n3. How does Llama 2's groundbreaking temporal capability, which organizes information based on time relevance, contribute to delivering more contextually accurate responses and enriching the user experience in interactive applications?\", 'prev_section_summary': \"The section discusses Meta's Llama 2 model, highlighting its exceptional performance in safety benchmarks compared to ChatGPT. It addresses the challenges of balancing helpfulness and safety in optimizing language models and the importance of finding the right equilibrium. The model employs two reward models for helpfulness and safety to optimize responses. Llama 2 outperforms competitors in most categories, including Chat GPT 3.5, despite facing challenges in coding and math problems compared to larger models like Chat GPT 4. The section emphasizes the efficiency and potential of Llama 2 in the market.\", 'section_summary': \"The section discusses Meta's Llama 2, an open-source language model that is revolutionizing commercial use. It compares Llama 2 to larger models like Chat GPT 4, highlighting Llama 2's efficiency and potential in the market. The Ghost Attention feature in Llama 2 enhances conversational continuity, while its groundbreaking temporal capability organizes information based on time relevance for more contextually accurate responses. The section also mentions Meta's open-sourcing of Llama 2 and the competition with MosaicML's MPT models.\", 'excerpt_keywords': 'Meta, Llama 2, language model, commercial use, Ghost Attention, conversational continuity, temporal capability, open-source, MosaicML, Databricks'}\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t 591cd83e-904d-4d43-80e7-7ee0da879e17\n",
            "Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
            "Text\t I. Llama 2: Revolutionizing Commercial Use Unlike its predecessor Llama 1, which was limited to research use, Llama 2 represents a major advancement as an open-source commercial model. Businesses can now integrate Llama 2 into products to create AI-powered applications. Availability on Azure and AWS facilitates fine-tuning and adoption. However, restrictions apply to prevent exploitation. Companies with over 700 million active daily users cannot use Llama 2. Additionally, its output cannot be used to improve other language models.  II. Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. While 7B, 13B, and 70B have already been released, the 34B model is still awaited. The pretrained variant, trained on a whopping 2 trillion tokens, boasts a context window of 4096 tokens, twice the size of its predecessor Llama 1. Meta also released a Llama 2 fine-tuned model for chat applications that was trained on over 1 million human annotations. Such extensive training comes at a cost, with the 70B model taking a staggering 1720320 GPU hours to train. The context window's length determines the amount of content the model can process at once, making Llama 2 a powerful language model in terms of scale and efficiency.  III. Safety Considerations: A Top Priority for Meta Meta's commitment to safety and alignment shines through in Llama 2's design. The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model's practical applicability and user experience. Thus, achieving\n",
            "Score\t 0.3847429804325645\n",
            "Metadata\t {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': '1. What are the different model sizes available for Llama 2 and how do they differ in terms of parameters and training time?\\n2. How does Meta prioritize safety considerations in the design of Llama 2, and how does it compare to other language models like ChatGPT in terms of AI safety violation percentages?\\n3. What restrictions apply to the commercial use of Llama 2, and why are companies with over 700 million active daily users prohibited from using it?', 'prev_section_summary': \"The section discusses Meta AI's Code Llama and its performance on coding benchmarks like HumanEval and MBPP. Code Llama outperformed other open-source code-centric Large Language Models and even its predecessor, Llama 2. Code Llama 34B achieved impressive scores on both benchmarks, positioning it as a significant player in the code LLM space. The results highlight Code Llama's potential to contribute to the advancement of open-source foundation models in various domains.\", 'section_summary': \"The section discusses Meta's Llama 2, an open-source commercial language model that allows businesses to integrate AI-powered applications. It mentions the different model sizes available (7B, 13B, 34B, and 70B parameters) and their training times. Safety considerations in the design of Llama 2 are highlighted, with a focus on AI safety violation percentages compared to other models like ChatGPT. Restrictions on commercial use, such as companies with over 700 million daily users being prohibited, are also mentioned.\", 'excerpt_keywords': 'Meta, Llama 2, open-source, commercial, language model, AI safety, model sizes, training time, restrictions, safety considerations'}\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t 48993d8b-597f-4f3c-95f9-88aa9ac4937a\n",
            "Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
            "Text\t The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model's practical applicability and user experience. Thus, achieving an optimum balance that allows the model to be both helpful and safe is of utmost importance. To strike the right balance between helpfulness and safety, Meta employed two reward models - one for helpfulness and another for safety - to optimize the model's responses. The 34B parameter model has reported higher safety violations than other variants, possibly contributing to the delay in its release.  IV. Helpfulness Comparison: Llama 2 Outperforms Competitors Llama 2 emerges as a strong contender in the open-source language model arena, outperforming its competitors in most categories. The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding. Despite being smaller, Llam a2's performance rivals that of Chat GPT 3.5, a significantly larger closed-source model. While GPT 4 and PalM-2-L, with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2's impressive ability to compete with larger models highlights its efficiency and potential in the market. However, Llama 2 does face challenges in coding and math problems, where models like Chat GPT 4 excel, given their significantly larger size. Chat GPT 4 performed significantly better than Llama 2 for coding (HumanEval benchmark)and math problem tasks (GSM8k benchmark). Open-source AI technologies, like Llama 2, continue to advance, offering\n",
            "Score\t 0.3793493137215412\n",
            "Metadata\t {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"1. How does Meta's Llama 2 model compare to other open-source language models in terms of safety benchmarks and helpfulness optimization?\\n2. What challenges does Meta's Llama 2 face in coding and math problem tasks compared to larger models like Chat GPT 4?\\n3. How does Meta strike a balance between providing useful information and ensuring safety in the optimization of their language model responses?\", 'prev_section_summary': \"The section discusses Meta's Llama 2, an open-source commercial language model that allows businesses to integrate AI-powered applications. It mentions the different model sizes available (7B, 13B, 34B, and 70B parameters) and their training times. Safety considerations in the design of Llama 2 are highlighted, with a focus on AI safety violation percentages compared to other models like ChatGPT. Restrictions on commercial use, such as companies with over 700 million daily users being prohibited, are also mentioned.\", 'section_summary': \"The section discusses Meta's Llama 2 model, highlighting its exceptional performance in safety benchmarks compared to ChatGPT. It addresses the challenges of balancing helpfulness and safety in optimizing language models and the importance of finding the right equilibrium. The model employs two reward models for helpfulness and safety to optimize responses. Llama 2 outperforms competitors in most categories, including Chat GPT 3.5, despite facing challenges in coding and math problems compared to larger models like Chat GPT 4. The section emphasizes the efficiency and potential of Llama 2 in the market.\", 'excerpt_keywords': \"Meta's Llama 2, open-source, language model, safety benchmarks, helpfulness optimization, AI safety, balance, reward models, commercial use, efficiency, market potential\"}\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
          ]
        }
      ],
      "source": [
        "for src in res.source_nodes:\n",
        "    print(\"Node ID\\t\", src.node_id)\n",
        "    print(\"Title\\t\", src.metadata[\"title\"])\n",
        "    print(\"Text\\t\", src.text)\n",
        "    print(\"Score\\t\", src.score)\n",
        "    print(\"Metadata\\t\", src.metadata)\n",
        "    print(\"-_\" * 20)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 21,
      "metadata": {},
      "outputs": [
        {
          "data": {
            "text/plain": [
              "'The Mistral model is a 7.3B parameter language model that was officially released on September 27, 2023. It uses the transformers architecture and was made available under the Apache 2.0 license. The model outperforms LLaMA 2 13B on various benchmarks and is on par with LLaMA 34B on many benchmarks. Mistral 7B incorporates Grouped-query attention (GQA) for faster inference and Sliding Window Attention (SWA) to handle longer sequences efficiently.'"
            ]
          },
          "execution_count": 21,
          "metadata": {},
          "output_type": "execute_result"
        }
      ],
      "source": [
        "res = query_engine.query(\"what is the Mistral model?\")\n",
        "res.response"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 22,
      "metadata": {},
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Node ID\t db3ce17d-a8db-45d7-89f8-c83a346e743a\n",
            "Text\t Mistral AI is a French company in artificial intelligence. It was founded in April 2023 by researchers previously employed by Meta and Google DeepMind: Arthur Mensch, TimothΓ©e Lacroix and Guillaume Lample. It has raised 385 million euros, or about $415 million in October 2023. In December 2023, it attained a valuation of more than $2 billion.It produces open large language models, citing the foundational importance of open-source software, and as a response to proprietary models.As of December 2023, two models have been published, and are available as weights. Another prototype \"Mistral Medium\" is available via API only.\n",
            "\n",
            "\n",
            "== History ==\n",
            "Mistral AI was co-founded in April 2023 by Arthur Mensch, Guillaume Lample and TimothΓ©e Lacroix.\n",
            "Prior to co-founding Mistral AI, Arthur Mensch worked at DeepMind, Google's artificial intelligence laboratory, while Guillaume Lample and TimothΓ©e Lacroix worked at Meta.In June 2023, the start-up carried out a first fundraising of 105 million euros (117 million US$) with investors including the American fund Lightspeed Venture Partners, Eric Schmidt, Xavier Niel and JCDecaux. The valuation is then estimated by the Financial Times at 240 million € (267 million US$).\n",
            "On September 27, 2023, the company made its language processing model β€œMistral 7B” available under the free Apache 2.0 license. This model has 7 billion parameters, a small size compared to its competitors.\n",
            "On December 10, 2023, Mistral AI announced that it had raised 385 million € (428 million US$) as part of its second fundraising. This round of financing notably involves the Californian fund Andreessen Horowitz, BNP Paribas and the software publisher Salesforce.On December 11, 2023, the company released the β€œMixtral 8x7B” model with 46.7 billion parameters but using only 12.9 billion per token thanks to the mixture of experts architecture. The model masters 5 languages (French, Spanish, Italian, English and German) and outperforms, according to its developers' tests, the \"LLama 2 70B\" model from Meta. A version trained to follow instructions and called β€œMixtral 8x7B Instruct” is also\n",
            "Score\t 0.5715999678606966\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t 4d3b2e97-0ee4-43f9-befd-ab0a9b2233b1\n",
            "Text\t Horowitz, BNP Paribas and the software publisher Salesforce.On December 11, 2023, the company released the β€œMixtral 8x7B” model with 46.7 billion parameters but using only 12.9 billion per token thanks to the mixture of experts architecture. The model masters 5 languages (French, Spanish, Italian, English and German) and outperforms, according to its developers' tests, the \"LLama 2 70B\" model from Meta. A version trained to follow instructions and called β€œMixtral 8x7B Instruct” is also offered.On February 26, 2024, Microsoft announced a new partnership with the company to expand its presence in the rapidly evolving artificial intelligence industry. Under the agreement, Mistral's rich language models will be available on Microsoft's Azure cloud, while the multilingual conversational assistant \"Le Chat\" will be launched in the style of ChatGPT.\n",
            "\n",
            "\n",
            "== Models ==\n",
            "\n",
            "\n",
            "=== Mistral 7B ===\n",
            "Mistral 7B is a 7.3B parameter language model using the transformers architecture. Officially released on September 27, 2023 via a BitTorrent magnet link, and Hugging Face. The model was released under the Apache 2.0 license. The release blog post claimed the model outperforms LLaMA 2 13B on all benchmarks tested, and is on par with LLaMA 34B on many benchmarks tested.Mistral 7B uses a similar architecture to LLaMA, but with some changes to the attention mechanism. In particular it uses Grouped-query attention (GQA) intended for faster inference and Sliding Window Attention (SWA) intended to handle longer sequences.\n",
            "Sliding Window Attention (SWA) reduces the computational cost and memory requirement for longer sequences. In sliding window attention, each token can only attend to a fixed number of tokens from the previous layer in a \"sliding window\" of 4096 tokens, with a total context length of 32768 tokens. At inference time, this reduces the cache availability, leading to higher latency and smaller throughput. To alleviate this issue, Mistral 7B uses a rolling buffer cache.\n",
            "Mistral 7B uses grouped-query attention (GQA), which is a variant of the standard attention mechanism. Instead of computing attention over all the hidden states, it computes attention over groups of hidden\n",
            "Score\t 0.5634399155685704\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
          ]
        }
      ],
      "source": [
        "for src in res.source_nodes:\n",
        "    print(\"Node ID\\t\", src.node_id)\n",
        "    print(\"Text\\t\", src.text)\n",
        "    print(\"Score\\t\", src.score)\n",
        "    print(\"-_\" * 20)"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "authorship_tag": "ABX9TyMcBonOXFUEEHJsKREchiOp",
      "include_colab_link": true,
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.12.4"
    },
    "widgets": {
      "application/vnd.jupyter.widget-state+json": {
        "0245f2604e4d49c8bd0210302746c47b": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "134210510d49476e959dd7d032bbdbdc": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "DescriptionStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "13b9c5395bca4c3ba21265240cb936cf": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "193aef33d9184055bb9223f56d456de6": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "3fbabd8a8660461ba5e7bc08ef39139a": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HBoxModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HBoxModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HBoxView",
            "box_style": "",
            "children": [
              "IPY_MODEL_df2365556ae242a2ab1a119f9a31a561",
              "IPY_MODEL_5f4b9d32df8f446e858e4c289dc282f9",
              "IPY_MODEL_5b588f83a15d42d9aca888e06bbd95ff"
            ],
            "layout": "IPY_MODEL_ad073bca655540809e39f26538d2ec0d"
          }
        },
        "47a4586384274577a726c57605e7f8d9": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "DescriptionStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "4a172e8c6aa44e41a42fc1d9cf714fd0": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HTMLModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_e7937a1bc68441a080374911a6563376",
            "placeholder": "​",
            "style": "IPY_MODEL_e532ed7bfef34f67b5fcacd9534eb789",
            "value": " 108/108 [00:03&lt;00:00, 33.70it/s]"
          }
        },
        "5b588f83a15d42d9aca888e06bbd95ff": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HTMLModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_af9b6ae927dd4764b9692507791bc67e",
            "placeholder": "​",
            "style": "IPY_MODEL_134210510d49476e959dd7d032bbdbdc",
            "value": " 14/14 [00:00&lt;00:00, 21.41it/s]"
          }
        },
        "5c7973afd79349ed997a69120d0629b2": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "ProgressStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "ProgressStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "bar_color": null,
            "description_width": ""
          }
        },
        "5f4b9d32df8f446e858e4c289dc282f9": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "FloatProgressModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "FloatProgressModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "ProgressView",
            "bar_style": "success",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_96a3bdece738481db57e811ccb74a974",
            "max": 14,
            "min": 0,
            "orientation": "horizontal",
            "style": "IPY_MODEL_5c7973afd79349ed997a69120d0629b2",
            "value": 14
          }
        },
        "5f9bb065c2b74d2e8ded32e1306a7807": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HBoxModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HBoxModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HBoxView",
            "box_style": "",
            "children": [
              "IPY_MODEL_73a06bc546a64f7f99a9e4a135319dcd",
              "IPY_MODEL_ce48deaf4d8c49cdae92bfdbb3a78df0",
              "IPY_MODEL_4a172e8c6aa44e41a42fc1d9cf714fd0"
            ],
            "layout": "IPY_MODEL_0245f2604e4d49c8bd0210302746c47b"
          }
        },
        "73a06bc546a64f7f99a9e4a135319dcd": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HTMLModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_e956dfab55084a9cbe33c8e331b511e7",
            "placeholder": "​",
            "style": "IPY_MODEL_cb394578badd43a89850873ad2526542",
            "value": "Generating embeddings: 100%"
          }
        },
        "96a3bdece738481db57e811ccb74a974": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "abfc9aa911ce4a5ea81c7c451f08295f": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "ProgressStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "ProgressStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "bar_color": null,
            "description_width": ""
          }
        },
        "ad073bca655540809e39f26538d2ec0d": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "af9b6ae927dd4764b9692507791bc67e": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "cb394578badd43a89850873ad2526542": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "DescriptionStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "ce48deaf4d8c49cdae92bfdbb3a78df0": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "FloatProgressModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "FloatProgressModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "ProgressView",
            "bar_style": "success",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_193aef33d9184055bb9223f56d456de6",
            "max": 108,
            "min": 0,
            "orientation": "horizontal",
            "style": "IPY_MODEL_abfc9aa911ce4a5ea81c7c451f08295f",
            "value": 108
          }
        },
        "df2365556ae242a2ab1a119f9a31a561": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "HTMLModel",
          "state": {
            "_dom_classes": [],
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "HTMLModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/controls",
            "_view_module_version": "1.5.0",
            "_view_name": "HTMLView",
            "description": "",
            "description_tooltip": null,
            "layout": "IPY_MODEL_13b9c5395bca4c3ba21265240cb936cf",
            "placeholder": "​",
            "style": "IPY_MODEL_47a4586384274577a726c57605e7f8d9",
            "value": "Parsing nodes: 100%"
          }
        },
        "e532ed7bfef34f67b5fcacd9534eb789": {
          "model_module": "@jupyter-widgets/controls",
          "model_module_version": "1.5.0",
          "model_name": "DescriptionStyleModel",
          "state": {
            "_model_module": "@jupyter-widgets/controls",
            "_model_module_version": "1.5.0",
            "_model_name": "DescriptionStyleModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "StyleView",
            "description_width": ""
          }
        },
        "e7937a1bc68441a080374911a6563376": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        },
        "e956dfab55084a9cbe33c8e331b511e7": {
          "model_module": "@jupyter-widgets/base",
          "model_module_version": "1.2.0",
          "model_name": "LayoutModel",
          "state": {
            "_model_module": "@jupyter-widgets/base",
            "_model_module_version": "1.2.0",
            "_model_name": "LayoutModel",
            "_view_count": null,
            "_view_module": "@jupyter-widgets/base",
            "_view_module_version": "1.2.0",
            "_view_name": "LayoutView",
            "align_content": null,
            "align_items": null,
            "align_self": null,
            "border": null,
            "bottom": null,
            "display": null,
            "flex": null,
            "flex_flow": null,
            "grid_area": null,
            "grid_auto_columns": null,
            "grid_auto_flow": null,
            "grid_auto_rows": null,
            "grid_column": null,
            "grid_gap": null,
            "grid_row": null,
            "grid_template_areas": null,
            "grid_template_columns": null,
            "grid_template_rows": null,
            "height": null,
            "justify_content": null,
            "justify_items": null,
            "left": null,
            "margin": null,
            "max_height": null,
            "max_width": null,
            "min_height": null,
            "min_width": null,
            "object_fit": null,
            "object_position": null,
            "order": null,
            "overflow": null,
            "overflow_x": null,
            "overflow_y": null,
            "padding": null,
            "right": null,
            "top": null,
            "visibility": null,
            "width": null
          }
        }
      }
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}