File size: 11,003 Bytes
4adb315
 
 
 
 
a4ba306
 
4adb315
 
0bfedbd
4adb315
 
d2e8f84
 
c203673
 
a4ba306
 
0bfedbd
a4ba306
d2e8f84
4adb315
 
7e92a44
4adb315
c203673
 
 
a4ba306
c203673
4adb315
c203673
 
 
a4ba306
c203673
 
 
 
 
 
 
 
 
 
 
 
4adb315
0bfedbd
4adb315
 
 
 
a4ba306
 
 
 
 
4adb315
 
 
d2e8f84
4adb315
a4ba306
4adb315
d2e8f84
 
c203673
 
a4ba306
 
0bfedbd
a4ba306
d2e8f84
4adb315
 
a4ba306
 
 
 
 
4adb315
 
 
d2e8f84
 
4adb315
a4ba306
4adb315
d2e8f84
 
c203673
 
a4ba306
 
0bfedbd
a4ba306
d2e8f84
4adb315
 
a4ba306
 
 
 
 
4adb315
d2e8f84
 
4adb315
0bfedbd
 
 
a4ba306
4adb315
 
 
a4ba306
 
 
 
 
4adb315
0bfedbd
4adb315
 
d2e8f84
4adb315
 
 
 
 
d2e8f84
4adb315
 
 
 
0bfedbd
 
 
 
 
 
 
4adb315
 
 
 
 
 
a4ba306
4adb315
 
 
a4ba306
4adb315
 
 
 
 
c203673
4adb315
 
 
c203673
a4ba306
4adb315
a4ba306
4adb315
 
a4ba306
 
 
0bfedbd
 
4adb315
 
 
 
a4ba306
4adb315
 
 
 
 
c203673
4adb315
 
 
c203673
a4ba306
4adb315
a4ba306
4adb315
 
a4ba306
 
 
0bfedbd
 
c203673
 
 
 
 
 
a4ba306
 
0bfedbd
a4ba306
c203673
 
 
a4ba306
c203673
 
 
 
 
 
 
 
 
 
a4ba306
c203673
a4ba306
c203673
 
a4ba306
 
 
0bfedbd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4ba306
0bfedbd
4adb315
a4ba306
 
 
 
 
 
 
08b8fbf
a4ba306
 
 
 
 
 
 
 
08b8fbf
a4ba306
 
 
 
 
0bfedbd
4adb315
a4ba306
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "view-in-github"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/01-Basic_Tutor.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "DMXyyXD0xix9"
      },
      "source": [
        "# Install Packages and Setup Variables\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "o4Q0N2omkAoZ",
        "outputId": "703fe996-2acf-4e90-92c1-252041ba7d7a"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.4/225.4 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.7/51.7 kB\u001b[0m \u001b[31m1.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m8.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m17.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.8/77.8 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h"
          ]
        }
      ],
      "source": [
        "!pip install -q openai==1.37.0"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "id": "xxK7EAAvr2aT"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "\n",
        "# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
        "os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_OPENAI_KEY>\""
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "68RbStS-xpbL"
      },
      "source": [
        "# Load the API client\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "id": "La8hdWqJkFkh"
      },
      "outputs": [],
      "source": [
        "from openai import OpenAI\n",
        "\n",
        "# Defining the \"client\" object that enables\n",
        "# us to connect to OpenAI API endpoints.\n",
        "client = OpenAI()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "CC-sa_uv6J2C"
      },
      "source": [
        "# Query the API\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "id": "7JRrn0uIsBfg"
      },
      "outputs": [],
      "source": [
        "# Define two questions: 1) Related to AI, 2) Unrelated topic.\n",
        "# These questions will be used to evaluate model's performance.\n",
        "QUESTION_AI = \"List a number of famous artificial intelligence frameworks?\"\n",
        "QUESTION_NOT_AI = (\n",
        "    \"What is the name of the highest mountain in the world and its height?\"\n",
        ")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "id": "CcP26IauuBuV"
      },
      "outputs": [],
      "source": [
        "# Defining a function to answer a question using \"gpt-4o-mini\" model.\n",
        "def ask_ai_tutor(question):\n",
        "    try:\n",
        "        # Formulating the system prompt and condition the model to answer only AI-related questions.\n",
        "        system_prompt = (\n",
        "            \"You are an AI tutor specialized in answering artificial intelligence-related questions. \"\n",
        "            \"Only answer AI-related question, else say that you cannot answer this question.\"\n",
        "        )\n",
        "\n",
        "        # Create a user prompt with the user's question\n",
        "        prompt = f\"Please provide an informative and accurate answer to the following question.\\nQuestion: {question}\\nAnswer:\"\n",
        "\n",
        "        # Call the OpenAI API\n",
        "        response = client.chat.completions.create(\n",
        "            model=\"gpt-4o-mini\",\n",
        "            temperature=1,\n",
        "            messages=[\n",
        "                {\"role\": \"system\", \"content\": system_prompt},\n",
        "                {\"role\": \"user\", \"content\": prompt},\n",
        "            ],\n",
        "        )\n",
        "\n",
        "        # Return the AI's response\n",
        "        return response.choices[0].message.content.strip()\n",
        "\n",
        "    except Exception as e:\n",
        "        return f\"An error occurred: {e}\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "W_dbwURpufR7",
        "outputId": "3cd84fb9-fe6f-4561-e9ee-ed606a983629"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Some famous artificial intelligence frameworks include TensorFlow, PyTorch, Keras, Microsoft Cognitive Toolkit (CNTK), and Apache MXNet.\n"
          ]
        }
      ],
      "source": [
        "# Ask the AI-related question.\n",
        "RES_AI = ask_ai_tutor(QUESTION_AI)\n",
        "print(RES_AI)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 6,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "37YuVJQquhpN",
        "outputId": "4550c44d-2150-4cca-f23e-c89ea43e2040"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "I'm sorry, but I cannot answer this question as it is not related to artificial intelligence. If you have any AI-related questions, feel free to ask!\n"
          ]
        }
      ],
      "source": [
        "# Ask the unrelated question.\n",
        "RES_NOT_AI = ask_ai_tutor(QUESTION_NOT_AI)\n",
        "print(RES_NOT_AI)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "NRBgk6WToIK0"
      },
      "source": [
        "# History\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "0_6GN2XsoEyM",
        "outputId": "3e66a833-a552-4bcc-9808-7b9f6b539310"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "The first suggested AI framework in the list provided earlier is TensorFlow. TensorFlow is an open-source machine learning library developed by Google that has become popular for its flexibility, scalability, and extensive support for deep learning algorithms. It allows users to build and train machine learning models efficiently, with various tools and resources available to aid in the development process. TensorFlow is widely used in research and industry for tasks such as image recognition, natural language processing, and reinforcement learning.\n"
          ]
        }
      ],
      "source": [
        "response = client.chat.completions.create(\n",
        "    model=\"gpt-4o-mini\",\n",
        "    temperature=1,\n",
        "    messages=[\n",
        "        {\n",
        "            \"role\": \"system\",\n",
        "            \"content\": \"You are an AI tutor specialized in answering artificial intelligence-related questions. Only answer AI-related question, else say that you cannot answer this question.\",\n",
        "        },\n",
        "        {\n",
        "            \"role\": \"user\",\n",
        "            \"content\": \"Please provide an informative and accurate answer to the following question.\\nQuestion: List a number of famous artificial intelligence frameworks?\\nAnswer:\",\n",
        "        },\n",
        "        {\"role\": \"assistant\", \"content\": RES_AI},\n",
        "        {\n",
        "            \"role\": \"user\",\n",
        "            \"content\": \"Please provide an informative and accurate answer to the following question.\\nQuestion: What is the name of the highest mountain in the world and its height?\\nAnswer:\",\n",
        "        },\n",
        "        {\"role\": \"assistant\", \"content\": RES_NOT_AI},\n",
        "        {\n",
        "            \"role\": \"user\",\n",
        "            \"content\": \"Please provide an informative and accurate answer to the following question.\\nQuestion: Can you write a summary of the first suggested AI framework in the first question?\\nAnswer:\",\n",
        "        },\n",
        "    ],\n",
        ")\n",
        "\n",
        "print(response.choices[0].message.content.strip())"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "authorship_tag": "ABX9TyOUuEM41HPKH6uCJFqocvSD",
      "include_colab_link": true,
      "provenance": []
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.12.4"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}