File size: 9,199 Bytes
a2a9a44 3e7bb9e a2a9a44 84f8c13 0cfc98f a2a9a44 bc02571 9b897d3 3e7bb9e 9b897d3 a2a9a44 a938093 a2a9a44 a938093 3e7bb9e a2a9a44 9adb76c a2a9a44 84f8c13 9adb76c a2a9a44 84f8c13 872ce15 a4ba306 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e f1d2f05 a2a9a44 9adb76c a2a9a44 f1d2f05 a2a9a44 d41011f a2a9a44 84f8c13 a2a9a44 f1d2f05 a2a9a44 9b897d3 f1d2f05 a2a9a44 f1d2f05 a2a9a44 f1d2f05 a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 0cfc98f 3e7bb9e a2a9a44 f0db5cb a2a9a44 3e7bb9e a2a9a44 9adb76c 3e7bb9e a2a9a44 beeea5a a2a9a44 beeea5a 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 3e7bb9e a2a9a44 f1d2f05 a2a9a44 872ce15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
import os
import logging
from typing import Optional
from datetime import datetime
import chromadb
from llama_index.core.tools import QueryEngineTool, FunctionTool, ToolMetadata
from llama_index.agent.openai import OpenAIAgent
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.vector_stores import (
MetadataFilters,
MetadataFilter,
FilterCondition,
)
import gradio as gr
from gradio.themes.utils import (
fonts,
)
from utils import init_mongo_db
from tutor_prompts import (
TEXT_QA_TEMPLATE,
QueryValidation,
system_message_validation,
system_message_openai_agent,
)
from call_openai import api_function_call
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logging.getLogger("httpx").setLevel(logging.WARNING)
# # This variables are used to intercept API calls
# # launch mitmweb
# cert_file = "/Users/omar/Downloads/mitmproxy-ca-cert.pem"
# os.environ["REQUESTS_CA_BUNDLE"] = cert_file
# os.environ["SSL_CERT_FILE"] = cert_file
# os.environ["HTTPS_PROXY"] = "http://127.0.0.1:8080"
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
MONGODB_URI = os.getenv("MONGODB_URI")
DB_NAME = os.getenv("DB_NAME", "ai-tutor-db")
DB_PATH = os.getenv("DB_PATH", f"scripts/{DB_NAME}")
if not os.path.exists(DB_PATH):
# Download the vector database from the Hugging Face Hub if it doesn't exist locally
# https://huggingface.co/datasets/towardsai-buster/ai-tutor-db/tree/main
logger.warning(
f"Vector database does not exist at {DB_PATH}, downloading from Hugging Face Hub"
)
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="towardsai-buster/ai-tutor-db", local_dir=DB_PATH, repo_type="dataset"
)
logger.info(f"Downloaded vector database to {DB_PATH}")
AVAILABLE_SOURCES_UI = [
"Gen AI 360: LLMs",
"Gen AI 360: LangChain",
"Gen AI 360: Advanced RAG",
"Towards AI Blog",
"Activeloop Docs",
"HF Transformers Docs",
"Wikipedia",
"OpenAI Docs",
"LangChain Docs",
]
AVAILABLE_SOURCES = [
"llm_course",
"langchain_course",
"advanced_rag_course",
"towards_ai",
"activeloop",
"hf_transformers",
"wikipedia",
"openai",
"langchain_docs",
]
# Initialize MongoDB
mongo_db = (
init_mongo_db(uri=MONGODB_URI, db_name="towardsai-buster")
if MONGODB_URI
else logger.warning("No mongodb uri found, you will not be able to save data.")
)
# Initialize vector store and index
db2 = chromadb.PersistentClient(path=DB_PATH)
chroma_collection = db2.get_or_create_collection(DB_NAME)
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(vector_store=vector_store)
# Initialize OpenAI models
llm = OpenAI(temperature=0, model="gpt-3.5-turbo", max_tokens=None)
# embeds = OpenAIEmbedding(model="text-embedding-3-large", mode="text_search")
embeds = OpenAIEmbedding(model="text-embedding-3-large", mode="similarity")
query_engine = index.as_query_engine(
llm=llm,
similarity_top_k=5,
embed_model=embeds,
streaming=True,
text_qa_template=TEXT_QA_TEMPLATE,
)
query_engine_tools = [
QueryEngineTool(
query_engine=query_engine,
metadata=ToolMetadata(
name="AI_information",
description="""The 'AI_information' tool serves as a comprehensive repository for insights into the field of artificial intelligence. When utilizing this tool, the input should be the user's complete question. The input can also be adapted to focus on specific aspects or further details of the current topic under discussion. This dynamic input approach allows for a tailored exploration of AI subjects, ensuring that responses are relevant and informative. Employ this tool to fetch nuanced information on topics such as model training, fine-tuning, LLM augmentation, and more, thereby facilitating a rich, context-aware dialogue.""",
),
)
]
def initialize_agent():
agent = OpenAIAgent.from_tools(
query_engine_tools,
llm=llm,
verbose=True,
system_prompt=system_message_openai_agent,
)
return agent
def reset_agent(agent_state):
agent_state = initialize_agent() # Reset the agent by reassigning a new instance
chatbot = [[None, None]]
return "Agent has been reset.", chatbot
def log_emails(email: gr.Textbox):
collection = "email_data-test"
if mongo_db is None:
logger.warning("No MongoDB instance found, skipping email logging")
return ""
logger.info(f"User reported {email=}")
email_document = {"email": email}
try:
mongo_db[collection].insert_one(email_document)
logger.info("")
except:
logger.info("Something went wrong logging")
return ""
def format_sources(completion) -> str:
if len(completion.source_nodes) == 0:
return ""
# Mapping of source system names to user-friendly names
display_source_to_ui = {
src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
}
documents_answer_template: str = (
"π Here are the sources I used to answer your question:\n\n{documents}"
)
document_template: str = "[π {source}: {title}]({url}), relevance: {score:2.2f}"
documents = "\n".join(
[
document_template.format(
title=src.metadata["title"],
score=src.score,
source=display_source_to_ui.get(
src.metadata["source"], src.metadata["source"]
),
url=src.metadata["url"],
)
for src in completion.source_nodes
]
)
return documents_answer_template.format(documents=documents)
def add_sources(history, completion):
if completion is None:
yield history
formatted_sources = format_sources(completion)
if formatted_sources == "":
yield history
history[-1][1] += "\n\n" + formatted_sources
yield history
def user(user_input, history, agent_state):
agent = agent_state
return "", history + [[user_input, None]]
def get_answer(history, agent_state):
user_input = history[-1][0]
history[-1][1] = ""
completion = agent_state.stream_chat(user_input)
for token in completion.response_gen:
history[-1][1] += token
yield history, completion
logger.info(f"completion: {history[-1][1]=}")
example_questions = [
"What is the LLama model?",
"What is a Large Language Model?",
"What is an embedding?",
]
with gr.Blocks(fill_height=True) as demo:
agent_state = gr.State(initialize_agent())
with gr.Row():
gr.HTML(
"<h3><center>Towards AI π€: A Question-Answering Bot for anything AI-related</center></h3>"
)
chatbot = gr.Chatbot(
elem_id="chatbot",
show_copy_button=True,
scale=2,
likeable=True,
show_label=False,
)
with gr.Row():
question = gr.Textbox(
label="What's your question?",
placeholder="Ask a question to the AI tutor here...",
lines=1,
scale=7,
show_label=False,
)
submit = gr.Button(value="Send", variant="primary", scale=1)
reset_button = gr.Button("Reset Chat", variant="secondary", scale=1)
with gr.Row():
examples = gr.Examples(
examples=example_questions,
inputs=question,
)
with gr.Row():
email = gr.Textbox(
label="Want to receive updates about our AI tutor?",
placeholder="Enter your email here...",
lines=1,
scale=6,
)
submit_email = gr.Button(value="Submit", variant="secondary", scale=1)
gr.Markdown(
"This application uses GPT3.5-Turbo to search the docs for relevant information and answer questions."
)
completion = gr.State()
submit.click(
user, [question, chatbot, agent_state], [question, chatbot], queue=False
).then(
get_answer,
inputs=[chatbot, agent_state],
outputs=[chatbot, completion],
).then(
add_sources, inputs=[chatbot, completion], outputs=[chatbot]
)
# .then(
# save_completion, inputs=[completion, chatbot]
# )
question.submit(
user, [question, chatbot, agent_state], [question, chatbot], queue=False
).then(
get_answer,
inputs=[chatbot, agent_state],
outputs=[chatbot, completion],
).then(
add_sources, inputs=[chatbot, completion], outputs=[chatbot]
)
# .then(
# save_completion, inputs=[completion, chatbot]
# )
reset_button.click(
reset_agent, inputs=[agent_state], outputs=[agent_state, chatbot]
)
submit_email.click(log_emails, email, email)
email.submit(log_emails, email, email)
demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
demo.launch(debug=False, share=False)
|