File size: 27,783 Bytes
08edf29
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
f11cae7
 
 
 
08edf29
f11cae7
 
 
 
 
 
 
 
 
08edf29
 
 
f11cae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
f11cae7
08edf29
 
 
 
 
f11cae7
 
 
08edf29
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
f11cae7
08edf29
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
f11cae7
08edf29
 
 
 
 
f11cae7
08edf29
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
f11cae7
08edf29
 
 
 
 
 
f11cae7
 
 
 
 
 
 
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11cae7
08edf29
f11cae7
08edf29
 
 
 
 
 
 
 
 
 
f11cae7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08edf29
 
 
 
f11cae7
08edf29
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "authorship_tag": "ABX9TyMcPZHiexcHnmM/BQzkTZ9Y",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/Advanced_Retriever.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Install Packages and Setup Variables"
      ],
      "metadata": {
        "id": "UwtfgR2TAiLM"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "sbO5PUR3AL-i",
        "outputId": "84609394-7c68-4a5b-e00a-ae8ac09a1bb9"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m226.7/226.7 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.4/15.4 MB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m45.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m526.8/526.8 kB\u001b[0m \u001b[31m27.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m53.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.0/92.0 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.4/62.4 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.3/41.3 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.8/6.8 MB\u001b[0m \u001b[31m52.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m59.9/59.9 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m107.0/107.0 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m283.7/283.7 kB\u001b[0m \u001b[31m13.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m142.5/142.5 kB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.9/71.9 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m53.6/53.6 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m52.5/52.5 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.5/130.5 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m64.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m52.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.2/130.2 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m307.7/307.7 kB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m47.2/47.2 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25h  Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
            "\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
            "spacy 3.7.4 requires typer<0.10.0,>=0.3.0, but you have typer 0.12.3 which is incompatible.\n",
            "weasel 0.3.4 requires typer<0.10.0,>=0.3.0, but you have typer 0.12.3 which is incompatible.\u001b[0m\u001b[31m\n",
            "\u001b[0m"
          ]
        }
      ],
      "source": [
        "!pip install -q llama-index==0.10.30 openai==1.12.0 tiktoken==0.6.0 llama-index-vector-stores-chroma==0.1.7"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import os\n",
        "\n",
        "# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
        "os.environ[\"OPENAI_API_KEY\"] = \"[OPENAI_API_KEY]\""
      ],
      "metadata": {
        "id": "39OAU5OlByI0"
      },
      "execution_count": 2,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Create a Vector Store"
      ],
      "metadata": {
        "id": "B2UvE-i9Nzon"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import chromadb\n",
        "\n",
        "# create client and a new collection\n",
        "# chromadb.EphemeralClient saves data in-memory.\n",
        "chroma_client = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
        "chroma_collection = chroma_client.create_collection(\"mini-llama-articles\")"
      ],
      "metadata": {
        "id": "O2haexSAByDD"
      },
      "execution_count": 3,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.vector_stores.chroma import ChromaVectorStore\n",
        "from llama_index.core.storage.storage_context import StorageContext\n",
        "\n",
        "# Define a storage context object using the created vector database.\n",
        "vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
        "storage_context = StorageContext.from_defaults(vector_store=vector_store)"
      ],
      "metadata": {
        "id": "OHO6a-zaBxeG"
      },
      "execution_count": 4,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Load the Dataset (CSV)"
      ],
      "metadata": {
        "id": "hZz9_ZYNN4Kv"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "## Download"
      ],
      "metadata": {
        "id": "uvOjzNNAN4wg"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model. Read the dataset as a long string."
      ],
      "metadata": {
        "id": "z5jGj4cRN7ou"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "!wget https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "x4llz2lHN2ij",
        "outputId": "d0cd17b8-eca9-45f0-ae14-846ab0d624e0"
      },
      "execution_count": 5,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "--2024-06-03 22:16:45--  https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 173646 (170K) [text/plain]\n",
            "Saving to: β€˜mini-llama-articles.csv’\n",
            "\n",
            "\rmini-llama-articles   0%[                    ]       0  --.-KB/s               \rmini-llama-articles 100%[===================>] 169.58K  --.-KB/s    in 0.03s   \n",
            "\n",
            "2024-06-03 22:16:45 (5.09 MB/s) - β€˜mini-llama-articles.csv’ saved [173646/173646]\n",
            "\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Read File"
      ],
      "metadata": {
        "id": "V-ezlgFaN-5u"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "import csv\n",
        "\n",
        "rows = []\n",
        "\n",
        "# Load the file as a JSON\n",
        "with open(\"./mini-llama-articles.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n",
        "  csv_reader = csv.reader(file)\n",
        "\n",
        "  for idx, row in enumerate( csv_reader ):\n",
        "    if idx == 0: continue; # Skip header row\n",
        "    rows.append( row )\n",
        "\n",
        "# The number of characters in the dataset.\n",
        "len( rows )"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "_M-0-D4fN2fc",
        "outputId": "1bfc497f-0653-4231-86c9-cfeff34e2182"
      },
      "execution_count": 6,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "14"
            ]
          },
          "metadata": {},
          "execution_count": 6
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Convert to Document obj"
      ],
      "metadata": {
        "id": "PBimOJVwOCjl"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core.schema import Document\n",
        "\n",
        "# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
        "documents = [Document(text=row[1], metadata={\"title\": row[0], \"url\": row[2], \"source_name\": row[3]}) for row in rows]"
      ],
      "metadata": {
        "id": "Ie--Y_3wN2c8"
      },
      "execution_count": 7,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Transforming"
      ],
      "metadata": {
        "id": "lqQpen6bOEza"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core.node_parser import SentenceWindowNodeParser\n",
        "\n",
        "# create the sentence window node parser\n",
        "node_parser = SentenceWindowNodeParser.from_defaults(\n",
        "    window_size=3,\n",
        "    include_metadata=True,\n",
        "\n",
        "    window_metadata_key=\"window\",\n",
        "    original_text_metadata_key=\"original_text\",\n",
        ")"
      ],
      "metadata": {
        "id": "zVBkAg6eN2an"
      },
      "execution_count": 8,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "nodes = node_parser.get_nodes_from_documents(documents)"
      ],
      "metadata": {
        "id": "KiDwIXFxN2YK"
      },
      "execution_count": 9,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "nodes[0]"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "f1aZ4wYVN2V1",
        "outputId": "e3ef377a-a195-44e3-a67a-554fcff29e67"
      },
      "execution_count": 10,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "TextNode(id_='20a4754c-3ab9-4d64-9aa3-e1379c37074e', embedding=None, metadata={'window': \"LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama.  Meta's Llama 2 represents a sophisticated evolution in LLMs.  This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion.  A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. \", 'original_text': \"LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. \", 'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, excluded_embed_metadata_keys=['window', 'original_text'], excluded_llm_metadata_keys=['window', 'original_text'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='1773f54a-0742-41dd-a645-ba7c07ff8f75', node_type=<ObjectType.DOCUMENT: '4'>, metadata={'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, hash='3b095b0e25cdf965d950cdbd7feb8024030e7645998c1a33dc4427affca624ab'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='1ac96425-5144-4897-9f7b-182156d3470c', node_type=<ObjectType.TEXT: '1'>, metadata={'window': \"LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama.  Meta's Llama 2 represents a sophisticated evolution in LLMs.  This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion.  A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications.  Benchmarking revealed Llama 2's superior performance over most extant open-source chat models. \", 'original_text': \"Meta's Llama 2 represents a sophisticated evolution in LLMs. \"}, hash='e06ffff4f5927a7e2252b2785825ad4b0dafdeb09355258be50a13bc170d7a5b')}, text=\"LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. \", start_char_idx=0, end_char_idx=132, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')"
            ]
          },
          "metadata": {},
          "execution_count": 10
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core import VectorStoreIndex\n",
        "\n",
        "# Add the documents to the database and create Index / embeddings\n",
        "index = VectorStoreIndex(\n",
        "    nodes, storage_context=storage_context\n",
        ")"
      ],
      "metadata": {
        "id": "moNbizWrN2Tu"
      },
      "execution_count": 11,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Compress the vector store directory to a zip file to be able to download and use later.\n",
        "!zip -r vectorstore-windowed.zip mini-llama-articles"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "nz6dQtXzyWqK",
        "outputId": "b636525e-47cc-4f57-cfa3-70b9cb17f7e0"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "  adding: mini-llama-articles/ (stored 0%)\n",
            "  adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/ (stored 0%)\n",
            "  adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/index_metadata.pickle (deflated 38%)\n",
            "  adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/link_lists.bin (deflated 88%)\n",
            "  adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/data_level0.bin (deflated 18%)\n",
            "  adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/length.bin (deflated 43%)\n",
            "  adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/header.bin (deflated 56%)\n",
            "  adding: mini-llama-articles/chroma.sqlite3 (deflated 69%)\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "# Load Indexes"
      ],
      "metadata": {
        "id": "7qZY6xOYyjIX"
      }
    },
    {
      "cell_type": "markdown",
      "source": [
        "If you have already uploaded the zip file for the vector store checkpoint, please uncomment the code in the following cell block to extract its contents. After doing so, you will be able to load the dataset from local storage."
      ],
      "metadata": {
        "id": "zo9kamyEykI6"
      }
    },
    {
      "cell_type": "code",
      "source": [
        "# !unzip vectorstore-windowed.zip"
      ],
      "metadata": {
        "id": "wS-V6NhMymx8"
      },
      "execution_count": 13,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "from llama_index.core.postprocessor import MetadataReplacementPostProcessor\n",
        "\n",
        "query_engine = index.as_query_engine(\n",
        "    # the target key defaults to `window` to match the node_parser's default\n",
        "    node_postprocessors=[\n",
        "        MetadataReplacementPostProcessor(target_metadata_key=\"window\")\n",
        "    ],\n",
        ")"
      ],
      "metadata": {
        "id": "fH2myF120oMi"
      },
      "execution_count": 14,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "response = query_engine.query(\n",
        "    \"How many parameters LLaMA2 model has?\"\n",
        ")\n",
        "print(response)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "EqNreFmE0vRb",
        "outputId": "bb5204c5-3ab8-460b-9702-5cf2f2b32f73"
      },
      "execution_count": 15,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "The Llama 2 model is available in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "for idx, item in enumerate( response.source_nodes ):\n",
        "  print(\"Source \", idx+1)\n",
        "  print(\"Original Text:\", item.node.metadata[\"original_text\"])\n",
        "  print(\"Window:\", item.node.metadata[\"window\"])\n",
        "  print(\"----\")"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "whdPLhVaMfOS",
        "outputId": "7b7ea07d-d93c-41a0-bd7b-6a9e8d8b18f7"
      },
      "execution_count": 22,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Source  1\n",
            "Original Text: Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. \n",
            "Window: Companies with over 700 million active daily users cannot use Llama 2.  Additionally, its output cannot be used to improve other language models.   II.  Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.  While 7B, 13B, and 70B have already been released, the 34B model is still awaited.  The pretrained variant, trained on a whopping 2 trillion tokens, boasts a context window of 4096 tokens, twice the size of its predecessor Llama 1.  Meta also released a Llama 2 fine-tuned model for chat applications that was trained on over 1 million human annotations. \n",
            "----\n",
            "Source  2\n",
            "Original Text: The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding. \n",
            "Window: The 34B parameter model has reported higher safety violations than other variants, possibly contributing to the delay in its release.   IV.  Helpfulness Comparison: Llama 2 Outperforms Competitors Llama 2 emerges as a strong contender in the open-source language model arena, outperforming its competitors in most categories.  The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding.  Despite being smaller, Llam a2's performance rivals that of Chat GPT 3.5, a significantly larger closed-source model.  While GPT 4 and PalM-2-L, with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks.  Llama 2's impressive ability to compete with larger models highlights its efficiency and potential in the market. \n",
            "----\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "dQBrOUYrLA76"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}