File size: 27,783 Bytes
08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 f11cae7 08edf29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyMcPZHiexcHnmM/BQzkTZ9Y",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/Advanced_Retriever.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"# Install Packages and Setup Variables"
],
"metadata": {
"id": "UwtfgR2TAiLM"
}
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "sbO5PUR3AL-i",
"outputId": "84609394-7c68-4a5b-e00a-ae8ac09a1bb9"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m226.7/226.7 kB\u001b[0m \u001b[31m2.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m15.4/15.4 MB\u001b[0m \u001b[31m17.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m45.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m526.8/526.8 kB\u001b[0m \u001b[31m27.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m53.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m92.0/92.0 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m62.4/62.4 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m41.3/41.3 kB\u001b[0m \u001b[31m2.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m6.8/6.8 MB\u001b[0m \u001b[31m52.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m59.9/59.9 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m107.0/107.0 kB\u001b[0m \u001b[31m10.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m283.7/283.7 kB\u001b[0m \u001b[31m13.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m142.5/142.5 kB\u001b[0m \u001b[31m1.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m7.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m13.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m71.9/71.9 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m53.6/53.6 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m52.5/52.5 kB\u001b[0m \u001b[31m4.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m130.5/130.5 kB\u001b[0m \u001b[31m13.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m23.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m64.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m52.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m130.2/130.2 kB\u001b[0m \u001b[31m11.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m307.7/307.7 kB\u001b[0m \u001b[31m20.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m47.2/47.2 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"spacy 3.7.4 requires typer<0.10.0,>=0.3.0, but you have typer 0.12.3 which is incompatible.\n",
"weasel 0.3.4 requires typer<0.10.0,>=0.3.0, but you have typer 0.12.3 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install -q llama-index==0.10.30 openai==1.12.0 tiktoken==0.6.0 llama-index-vector-stores-chroma==0.1.7"
]
},
{
"cell_type": "code",
"source": [
"import os\n",
"\n",
"# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
"os.environ[\"OPENAI_API_KEY\"] = \"[OPENAI_API_KEY]\""
],
"metadata": {
"id": "39OAU5OlByI0"
},
"execution_count": 2,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Create a Vector Store"
],
"metadata": {
"id": "B2UvE-i9Nzon"
}
},
{
"cell_type": "code",
"source": [
"import chromadb\n",
"\n",
"# create client and a new collection\n",
"# chromadb.EphemeralClient saves data in-memory.\n",
"chroma_client = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
"chroma_collection = chroma_client.create_collection(\"mini-llama-articles\")"
],
"metadata": {
"id": "O2haexSAByDD"
},
"execution_count": 3,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"from llama_index.core.storage.storage_context import StorageContext\n",
"\n",
"# Define a storage context object using the created vector database.\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
"storage_context = StorageContext.from_defaults(vector_store=vector_store)"
],
"metadata": {
"id": "OHO6a-zaBxeG"
},
"execution_count": 4,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Load the Dataset (CSV)"
],
"metadata": {
"id": "hZz9_ZYNN4Kv"
}
},
{
"cell_type": "markdown",
"source": [
"## Download"
],
"metadata": {
"id": "uvOjzNNAN4wg"
}
},
{
"cell_type": "markdown",
"source": [
"The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model. Read the dataset as a long string."
],
"metadata": {
"id": "z5jGj4cRN7ou"
}
},
{
"cell_type": "code",
"source": [
"!wget https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "x4llz2lHN2ij",
"outputId": "d0cd17b8-eca9-45f0-ae14-846ab0d624e0"
},
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"--2024-06-03 22:16:45-- https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 173646 (170K) [text/plain]\n",
"Saving to: βmini-llama-articles.csvβ\n",
"\n",
"\rmini-llama-articles 0%[ ] 0 --.-KB/s \rmini-llama-articles 100%[===================>] 169.58K --.-KB/s in 0.03s \n",
"\n",
"2024-06-03 22:16:45 (5.09 MB/s) - βmini-llama-articles.csvβ saved [173646/173646]\n",
"\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"# Read File"
],
"metadata": {
"id": "V-ezlgFaN-5u"
}
},
{
"cell_type": "code",
"source": [
"import csv\n",
"\n",
"rows = []\n",
"\n",
"# Load the file as a JSON\n",
"with open(\"./mini-llama-articles.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n",
" csv_reader = csv.reader(file)\n",
"\n",
" for idx, row in enumerate( csv_reader ):\n",
" if idx == 0: continue; # Skip header row\n",
" rows.append( row )\n",
"\n",
"# The number of characters in the dataset.\n",
"len( rows )"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_M-0-D4fN2fc",
"outputId": "1bfc497f-0653-4231-86c9-cfeff34e2182"
},
"execution_count": 6,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"14"
]
},
"metadata": {},
"execution_count": 6
}
]
},
{
"cell_type": "markdown",
"source": [
"# Convert to Document obj"
],
"metadata": {
"id": "PBimOJVwOCjl"
}
},
{
"cell_type": "code",
"source": [
"from llama_index.core.schema import Document\n",
"\n",
"# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
"documents = [Document(text=row[1], metadata={\"title\": row[0], \"url\": row[2], \"source_name\": row[3]}) for row in rows]"
],
"metadata": {
"id": "Ie--Y_3wN2c8"
},
"execution_count": 7,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"# Transforming"
],
"metadata": {
"id": "lqQpen6bOEza"
}
},
{
"cell_type": "code",
"source": [
"from llama_index.core.node_parser import SentenceWindowNodeParser\n",
"\n",
"# create the sentence window node parser\n",
"node_parser = SentenceWindowNodeParser.from_defaults(\n",
" window_size=3,\n",
" include_metadata=True,\n",
"\n",
" window_metadata_key=\"window\",\n",
" original_text_metadata_key=\"original_text\",\n",
")"
],
"metadata": {
"id": "zVBkAg6eN2an"
},
"execution_count": 8,
"outputs": []
},
{
"cell_type": "code",
"source": [
"nodes = node_parser.get_nodes_from_documents(documents)"
],
"metadata": {
"id": "KiDwIXFxN2YK"
},
"execution_count": 9,
"outputs": []
},
{
"cell_type": "code",
"source": [
"nodes[0]"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "f1aZ4wYVN2V1",
"outputId": "e3ef377a-a195-44e3-a67a-554fcff29e67"
},
"execution_count": 10,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"TextNode(id_='20a4754c-3ab9-4d64-9aa3-e1379c37074e', embedding=None, metadata={'window': \"LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. Meta's Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. \", 'original_text': \"LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. \", 'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, excluded_embed_metadata_keys=['window', 'original_text'], excluded_llm_metadata_keys=['window', 'original_text'], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='1773f54a-0742-41dd-a645-ba7c07ff8f75', node_type=<ObjectType.DOCUMENT: '4'>, metadata={'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, hash='3b095b0e25cdf965d950cdbd7feb8024030e7645998c1a33dc4427affca624ab'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='1ac96425-5144-4897-9f7b-182156d3470c', node_type=<ObjectType.TEXT: '1'>, metadata={'window': \"LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. Meta's Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. Benchmarking revealed Llama 2's superior performance over most extant open-source chat models. \", 'original_text': \"Meta's Llama 2 represents a sophisticated evolution in LLMs. \"}, hash='e06ffff4f5927a7e2252b2785825ad4b0dafdeb09355258be50a13bc170d7a5b')}, text=\"LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. \", start_char_idx=0, end_char_idx=132, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')"
]
},
"metadata": {},
"execution_count": 10
}
]
},
{
"cell_type": "code",
"source": [
"from llama_index.core import VectorStoreIndex\n",
"\n",
"# Add the documents to the database and create Index / embeddings\n",
"index = VectorStoreIndex(\n",
" nodes, storage_context=storage_context\n",
")"
],
"metadata": {
"id": "moNbizWrN2Tu"
},
"execution_count": 11,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Compress the vector store directory to a zip file to be able to download and use later.\n",
"!zip -r vectorstore-windowed.zip mini-llama-articles"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "nz6dQtXzyWqK",
"outputId": "b636525e-47cc-4f57-cfa3-70b9cb17f7e0"
},
"execution_count": 12,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" adding: mini-llama-articles/ (stored 0%)\n",
" adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/ (stored 0%)\n",
" adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/index_metadata.pickle (deflated 38%)\n",
" adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/link_lists.bin (deflated 88%)\n",
" adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/data_level0.bin (deflated 18%)\n",
" adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/length.bin (deflated 43%)\n",
" adding: mini-llama-articles/f4ee5232-8d1e-4e11-899e-02eafe4527df/header.bin (deflated 56%)\n",
" adding: mini-llama-articles/chroma.sqlite3 (deflated 69%)\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"# Load Indexes"
],
"metadata": {
"id": "7qZY6xOYyjIX"
}
},
{
"cell_type": "markdown",
"source": [
"If you have already uploaded the zip file for the vector store checkpoint, please uncomment the code in the following cell block to extract its contents. After doing so, you will be able to load the dataset from local storage."
],
"metadata": {
"id": "zo9kamyEykI6"
}
},
{
"cell_type": "code",
"source": [
"# !unzip vectorstore-windowed.zip"
],
"metadata": {
"id": "wS-V6NhMymx8"
},
"execution_count": 13,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from llama_index.core.postprocessor import MetadataReplacementPostProcessor\n",
"\n",
"query_engine = index.as_query_engine(\n",
" # the target key defaults to `window` to match the node_parser's default\n",
" node_postprocessors=[\n",
" MetadataReplacementPostProcessor(target_metadata_key=\"window\")\n",
" ],\n",
")"
],
"metadata": {
"id": "fH2myF120oMi"
},
"execution_count": 14,
"outputs": []
},
{
"cell_type": "code",
"source": [
"response = query_engine.query(\n",
" \"How many parameters LLaMA2 model has?\"\n",
")\n",
"print(response)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "EqNreFmE0vRb",
"outputId": "bb5204c5-3ab8-460b-9702-5cf2f2b32f73"
},
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"The Llama 2 model is available in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"for idx, item in enumerate( response.source_nodes ):\n",
" print(\"Source \", idx+1)\n",
" print(\"Original Text:\", item.node.metadata[\"original_text\"])\n",
" print(\"Window:\", item.node.metadata[\"window\"])\n",
" print(\"----\")"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "whdPLhVaMfOS",
"outputId": "7b7ea07d-d93c-41a0-bd7b-6a9e8d8b18f7"
},
"execution_count": 22,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Source 1\n",
"Original Text: Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. \n",
"Window: Companies with over 700 million active daily users cannot use Llama 2. Additionally, its output cannot be used to improve other language models. II. Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. While 7B, 13B, and 70B have already been released, the 34B model is still awaited. The pretrained variant, trained on a whopping 2 trillion tokens, boasts a context window of 4096 tokens, twice the size of its predecessor Llama 1. Meta also released a Llama 2 fine-tuned model for chat applications that was trained on over 1 million human annotations. \n",
"----\n",
"Source 2\n",
"Original Text: The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding. \n",
"Window: The 34B parameter model has reported higher safety violations than other variants, possibly contributing to the delay in its release. IV. Helpfulness Comparison: Llama 2 Outperforms Competitors Llama 2 emerges as a strong contender in the open-source language model arena, outperforming its competitors in most categories. The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding. Despite being smaller, Llam a2's performance rivals that of Chat GPT 3.5, a significantly larger closed-source model. While GPT 4 and PalM-2-L, with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2's impressive ability to compete with larger models highlights its efficiency and potential in the market. \n",
"----\n"
]
}
]
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "dQBrOUYrLA76"
},
"execution_count": null,
"outputs": []
}
]
} |