File size: 80,290 Bytes
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
 
 
755b36e
f8ecd7b
 
 
 
 
 
 
 
755b36e
 
f8ecd7b
e68e63d
f8ecd7b
a5280c8
f8ecd7b
a5280c8
f8ecd7b
 
 
5d7ba1e
 
f8ecd7b
e68e63d
f8ecd7b
 
 
 
 
 
 
 
1ff6bfb
5d7ba1e
 
 
f8ecd7b
e68e63d
f8ecd7b
 
 
 
 
 
 
 
 
 
5d7ba1e
 
 
f8ecd7b
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
e68e63d
f8ecd7b
4a643f4
f8ecd7b
4a643f4
f8ecd7b
 
 
 
 
 
 
5d7ba1e
 
 
f8ecd7b
a5280c8
f8ecd7b
 
 
 
 
 
 
 
 
5d7ba1e
 
 
f8ecd7b
 
 
 
 
 
 
 
08b8fbf
f8ecd7b
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
755b36e
f8ecd7b
a5280c8
f8ecd7b
a5280c8
f8ecd7b
a5280c8
f8ecd7b
 
 
755b36e
f8ecd7b
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
a5280c8
f8ecd7b
a5280c8
f8ecd7b
a5280c8
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
755b36e
f8ecd7b
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
a5280c8
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
1c9827a
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
 
 
 
a5280c8
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5280c8
f8ecd7b
a5280c8
f8ecd7b
a5280c8
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c9827a
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5280c8
f8ecd7b
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
a5280c8
f8ecd7b
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
a5280c8
f8ecd7b
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
1c9827a
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
1c9827a
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
1c9827a
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
e68e63d
f8ecd7b
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
1c9827a
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
1c9827a
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
e68e63d
f8ecd7b
 
 
 
 
a5280c8
f8ecd7b
 
 
 
 
 
 
 
 
 
 
 
 
 
1c9827a
a5280c8
f8ecd7b
 
 
 
1ff6bfb
f8ecd7b
 
e68e63d
f8ecd7b
 
e68e63d
f8ecd7b
 
 
e68e63d
f8ecd7b
e68e63d
f8ecd7b
 
e68e63d
f8ecd7b
1ff6bfb
f8ecd7b
 
 
e68e63d
f8ecd7b
e68e63d
f8ecd7b
 
e68e63d
f8ecd7b
 
 
e68e63d
 
f8ecd7b
 
 
 
1ff6bfb
f8ecd7b
 
a5280c8
 
 
 
 
 
 
 
 
f8ecd7b
 
e68e63d
f8ecd7b
 
 
 
a5280c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68e63d
a5280c8
 
 
 
 
 
 
 
 
 
 
 
 
 
e68e63d
a5280c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e68e63d
a5280c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8ecd7b
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
755b36e
f8ecd7b
 
 
 
 
 
 
 
 
 
 
5d7ba1e
f8ecd7b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/06-Evaluate_RAG.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "5BGJ3fxhOk2V"
      },
      "source": [
        "# Install Packages and Setup Variables"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "QPJzr-I9XQ7l"
      },
      "outputs": [],
      "source": [
        "!pip install -q llama-index==0.10.37 openai==1.30.1 tiktoken==0.7.0 chromadb==0.5.0 llama-index-vector-stores-chroma==0.1.7"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "riuXwpSPcvWC"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "\n",
        "# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n",
        "os.environ[\"OPENAI_API_KEY\"] = \"[YOUR_OPENAI_KEY]\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "km-KQOrgr3VB"
      },
      "outputs": [],
      "source": [
        "# Allows running asyncio in environments with an existing event loop, like Jupyter notebooks.\n",
        "\n",
        "import nest_asyncio\n",
        "\n",
        "nest_asyncio.apply()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0BwVuJXlzHVL"
      },
      "source": [
        "# Create a VectoreStore"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "SQP87lHczHKc"
      },
      "outputs": [],
      "source": [
        "import chromadb\n",
        "\n",
        "# create client and a new collection\n",
        "# chromadb.EphemeralClient saves data in-memory.\n",
        "chroma_client = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
        "chroma_collection = chroma_client.create_collection(\"mini-llama-articles\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "zAaGcYMJzHAN"
      },
      "outputs": [],
      "source": [
        "from llama_index.vector_stores.chroma import ChromaVectorStore\n",
        "\n",
        "# Define a storage context object using the created vector database.\n",
        "vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "I9JbAzFcjkpn"
      },
      "source": [
        "# Load the Dataset (CSV)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_Tif8-JoRH68"
      },
      "source": [
        "## Download"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4fQaa1LN1mXL"
      },
      "source": [
        "The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "fQtpDvUzKNzI"
      },
      "outputs": [],
      "source": [
        "!wget https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "zk-4alIxROo8"
      },
      "source": [
        "## Load the Articles"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "_WER5lt0N7c5"
      },
      "outputs": [],
      "source": [
        "import csv\n",
        "\n",
        "rows = []\n",
        "\n",
        "# Load the file as a JSON\n",
        "with open(\"./mini-llama-articles.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n",
        "    csv_reader = csv.reader(file)\n",
        "\n",
        "    for idx, row in enumerate(csv_reader):\n",
        "        if idx == 0:\n",
        "            continue\n",
        "            # Skip header row\n",
        "        rows.append(row)\n",
        "\n",
        "# The number of characters in the dataset.\n",
        "len(rows)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "wxEStggPdxYs"
      },
      "source": [
        "# Convert to Document obj"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "lFvW_886dxKX"
      },
      "outputs": [],
      "source": [
        "from llama_index.core import Document\n",
        "from llama_index.core.schema import TextNode\n",
        "\n",
        "# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
        "documents = [\n",
        "    Document(\n",
        "        text=row[1], metadata={\"title\": row[0], \"url\": row[2], \"source_name\": row[3]},\n",
        "    )\n",
        "    for row in rows\n",
        "]\n",
        "# By default, the node/chunks ids are set to random uuids. To ensure same id's per run, we manually set them.\n",
        "for idx, doc in enumerate(documents):\n",
        "    doc.id_ = f\"doc_{idx}\""
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Njoc3XEVkKkf",
        "outputId": "b40d03b6-4f19-465a-890c-9363481e3eca",
        "collapsed": true
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "Document(id_='doc_0', embedding=None, metadata={'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='LLM Variants and Meta\\'s Open Source Before shedding light on four major trends, I\\'d share the latest Meta\\'s Llama 2 and Code Llama. Meta\\'s Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. Benchmarking revealed Llama 2\\'s superior performance over most extant open-source chat models. Human-centric evaluations, focusing on safety and utility metrics, positioned Llama 2-Chat as a potential contender against proprietary, closed-source counterparts. The development trajectory of Llama 2 emphasized rigorous fine-tuning methodologies. Meta\\'s transparent delineation of these processes aims to catalyze community-driven advancements in LLMs, underscoring a commitment to collaborative and responsible AI development. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model;Codel Llama - Python specialized for Python;and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions. Based on its benchmark testing, Code Llama outperformed state-of-the-art publicly available LLMs (except GPT-4) on code tasks. Llama 2, Llama 2-Chat, and Code Llama are key steps in LLM development but still have a way to go compared to GPT-4. Meta\\'s open access and commitment to improving these models promise transparent and faster LLM progress in the future. Please refer to the LLM and Llama variants below:  From LLMs to Multimodal LLMs, like OpenAI\\'s ChatGPT (GPT-3.5), primarily focus on understanding and generating human language. They\\'ve been instrumental in tasks like text generation, translation, and even creative writing. However, their scope is limited to text. Enter multimodal models like GPT-4. These are a new breed of AI models that can understand and generate not just text, but also images, sounds, and potentially other types of data. The term \"multimodal\" refers to their ability to process multiple modes or types of data simultaneously. This is a game-changer. Imagine an AI that can not only read a description of a dress but also visualize it or even design it! Multimodal AI models are moving us towards more holistic AI systems. These systems can potentially understand our world in a more comprehensive manner, bridging the gap between different forms of data and providing richer, more integrated solutions. As we stand on the cusp of this new era, it\\'s exciting to envision the myriad of applications and innovations that Multimodal models will bring to the table. The future of AI looks more integrated and versatile than ever before.  From Connections to Vector DB The AI landscape is witnessing a fascinating transition: from Language Model (LLM) connections or integrations, e.g., LangChain and LlamaIndex, to the rise of Vector Databases (Vector DB) such as Weaviate, Milvus, Pinecone, Chroma, and Vespa.ai. But what\\'s driving this shift, and why does it matter? LLM connections, like the LlamaIndex, primarily focus on linking and understanding vast amounts of external data. They\\'ve been pivotal in creating semantic connections, enabling more intuitive search experiences, and enhancing data accessibility. However, as the volume and variety of data grow, the need for more advanced storage and retrieval mechanisms becomes evident. This is where Vector DBs come into play. Unlike traditional databases that store data in rows and columns, Vector DBs store data in high-dimensional space, allowing for more efficient and accurate similarity searches. Tools like Weaviate and Milvus are designed to handle massive datasets, making them ideal for tasks like image recognition, recommendation systems, and more. The rise of Vector DBs represents a broader trend in AI: the quest for more efficient, scalable, and versatile data handling solutions. As we navigate this evolution, it\\'s clear that the combination of LLMs and Vector DBs will redefine how we store, access, and understand data in the AI-driven future.  From Agents to OS The AI realm is abuzz with innovations, and one of the most intriguing shifts we\\'re witnessing is the transition from LLM agents to using LLMs as Operating Systems (OS). Let\\'s delve into this evolution and its implications. LLM agents, like AutoGPT, AgentGPT, BabyAGI, and HuggingGPT, have been groundbreaking in automating tasks based on user requests. These agents leverage the power of Language Models (LLMs) to understand and execute commands, making them invaluable in tasks ranging from content generation to data analysis. Their adaptability and intelligence have made them a staple in many AI toolkits. However, the vision for AI doesn\\'t stop there. The concept of LLM as an OS is emerging as the next big thing. Imagine an operating system where the core is a language model, orchestrating everything around it. Such a system would not just execute tasks but would understand context, anticipate needs, and offer solutions in real time. It\\'s like turning the LLM into the brain of the digital ecosystem, making devices and applications more intuitive and responsive than ever. The move towards LLM as OS signifies a paradigm shift in how we perceive and utilize AI. It\\'s not just about automation anymore; it\\'s about creating a seamless, intelligent interface between humans and technology. As we stand on the brink of this transformation, the potential for LLM-driven OS to revolutionize our digital interactions is immense.  From Fine-tuning to Plugins The world of LLMs is undergoing a transformative shift, moving from intricate fine-tuning processes to the more dynamic realm of plugins. Let\\'s unpack this evolution. Historically, fine-tuning has been the cornerstone of LLM optimization. There are two primary ways to fine-tune LLMs: feeding data into the LLM in real-time and directly fine-tuning on the LLM. From a technical standpoint, this involves three methods: Transfer Learning: Adapting a pre-trained model to new tasks.Sequential Fine-tuning: Refining models in stages for specific tasks.Task-specific Fine-tuning: Tailoring models for a particular function. Moreover, LLM techniques like In-context learning, Few-shot learning, and Zero-shot learning have further enhanced the model\\'s adaptability, allowing them to understand and generate content with minimal data. However, the future of LLMs is leaning towards plugins. With the introduction of tools like GPT-4 Plugins, the focus is on extending LLMs seamlessly. Instead of running LLMs as a service, they\\'re envisioned as platforms. This means integrating LLMs with various tools, enhancing their capabilities, and offering a more modular and scalable approach to AI applications. The journey from fine-tuning to plugins represents a move from static optimization to dynamic adaptability, ensuring that LLMs remain at the forefront of AI innovation.  In a Nutshell The AI domain is witnessing rapid shifts, with LLMs playing a central role. Initially, the move was from LLMs to Multimodal models, expanding from text to include images and sounds. Simultaneously, the trend shifted from LLM connections, which linked external data, to Vector Databases for efficient high-dimensional storage. Another evolution saw LLM agents, which automated tasks, transitioning towards LLMs as Operating Systems. This change aims for more intuitive, context-aware devices and applications. Furthermore, the traditional fine-tuning processes of LLMs are now being replaced by dynamic plugins, turning LLMs into platforms integrated with various tools. Leading this LLM revolution are OpenAI\\'s GPT-4 and Meta\\'s LLaMA2. Their pioneering efforts are setting the stage for an AI future that\\'s more integrated, responsive, and attuned to human interactions.  More Readings Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond: https://arxiv.org/abs/2304.13712Sparks of Artificial General Intelligence: Early experiments with GPT-4: https://arxiv.org/abs/2303.12712GPT4All-J: https://huggingface.co/nomic-ai/gpt4all-jIntroducing Code Llama, a state-of-the-art large language model for coding: https://ai.meta.com/blog/code-llama-large-language-model-coding/Llama 2: Open Foundation and Fine-Tuned Chat Models: https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')"
            ]
          },
          "metadata": {},
          "execution_count": 11
        }
      ],
      "source": [
        "documents[0]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "S17g2RYOjmf2"
      },
      "source": [
        "# Transforming"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "STACTMUR1z9N"
      },
      "outputs": [],
      "source": [
        "from llama_index.core.node_parser import TokenTextSplitter\n",
        "from llama_index.core.schema import BaseNode\n",
        "import hashlib\n",
        "\n",
        "def deterministic_id_func(i: int, doc: BaseNode) -> str:\n",
        "    \"\"\"Deterministic ID function for the text splitter.\n",
        "    This will be used to generate a unique repeatable identifier for each node.\"\"\"\n",
        "    unique_identifier = doc.id_ + str(i)\n",
        "    hasher = hashlib.sha256()\n",
        "    hasher.update(unique_identifier.encode('utf-8'))\n",
        "    return hasher.hexdigest()\n",
        "\n",
        "text_splitter = TokenTextSplitter(separator=\" \", chunk_size=512, chunk_overlap=128, id_func=deterministic_id_func)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "CtdsIUQ81_hT"
      },
      "outputs": [],
      "source": [
        "from llama_index.embeddings.openai import OpenAIEmbedding\n",
        "from llama_index.core.ingestion import IngestionPipeline\n",
        "\n",
        "pipeline = IngestionPipeline(\n",
        "    transformations=[\n",
        "        text_splitter,\n",
        "        OpenAIEmbedding(),\n",
        "    ],\n",
        "    vector_store=vector_store\n",
        ")\n",
        "\n",
        "nodes = pipeline.run(documents=documents, show_progress=True)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "collapsed": true,
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "n5WRy0g71Hwu",
        "outputId": "4caee0cf-3b6a-43a9-b12f-668f241641c1"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "TextNode(id_='4ab5bd897f01474fc9b0049f95e31edae3ccd9e74d0f0acd3932b50a74d608b6', embedding=[-0.022489557042717934, 0.010829868726432323, -0.017510632053017616, -0.013220878317952156, 0.00476795481517911, 0.01368501503020525, -0.028073269873857498, 0.025499416515231133, -0.03817176818847656, -0.028706183657050133, 0.028424888849258423, 0.028059205040335655, -0.02846708334982395, -0.01441638357937336, 0.008023947477340698, 0.019254662096500397, 0.014894585125148296, 0.003285880433395505, 0.004690598696470261, -0.004845311399549246, -0.002776032779365778, 0.00021833348728250712, -0.0064733074977993965, -0.019775059074163437, 0.004556983709335327, 0.02648395113646984, 0.026272978633642197, -0.028537405654788017, -0.017580954357981682, 0.0022995888721197844, 0.012756740674376488, 0.014036634936928749, -0.02931096777319908, -0.0015875602839514613, -0.0138326957821846, -0.017580954357981682, 0.016948040574789047, -0.005618873052299023, 0.035780761390924454, -0.010970516130328178, 0.01465548388659954, 0.007644199300557375, 0.006318595260381699, -0.030604926869273186, -0.027806038036942482, 8.427870488958433e-05, 0.023009954020380974, -0.026357367634773254, -0.025372834876179695, 0.0009801381966099143, -0.004335463512688875, 0.04509163275361061, -0.03293967619538307, 0.020140742883086205, 0.002515834756195545, -0.004085814114660025, 0.006199044641107321, -0.001410871627740562, 0.02624484896659851, 0.01378346886485815, -0.002285524271428585, -0.003994393162429333, -0.017651278525590897, 0.021378440782427788, -0.010893159545958042, -0.005780618172138929, -0.030267372727394104, 0.032855287194252014, 0.008924093097448349, -0.008656862191855907, -0.0007274119998328388, 0.015386851504445076, 0.008474020287394524, -0.022967759519815445, 0.028917154297232628, 0.007320709526538849, -0.018101351335644722, -0.020604878664016724, -0.02482430823147297, 0.0063959513790905476, 0.016877716407179832, 0.0035284976474940777, -0.0007964172400534153, 0.0344868004322052, 0.01715901307761669, -0.005158252082765102, 0.021026821807026863, -0.019198402762413025, -0.011969114653766155, -0.026934023946523666, -0.0012078116415068507, -0.0008223491604439914, 0.05054876208305359, 0.02251768670976162, -0.03150507062673569, 0.006642085034400225, -0.014613290317356586, 0.013931148685514927, -0.02115340530872345, -0.021941032260656357, -0.02552754618227482, -0.019423440098762512, -0.018129481002688408, -0.019915705546736717, -0.015696275979280472, 0.010182889178395271, 0.01728559471666813, 0.021406570449471474, 0.004676533862948418, 0.03184262663125992, -0.016976170241832733, 0.04542918875813484, 0.00532351341098547, -0.04028148576617241, -0.017398113384842873, 0.007071060128509998, 0.0276653915643692, -0.010801739059388638, -0.008895963430404663, 0.02243329957127571, 0.027201253920793533, 0.022250456735491753, 0.008066141977906227, -0.0038220996502786875, 0.02105495147407055, 0.0001253741793334484, -0.016554227098822594, -0.003452899632975459, -0.020056353881955147, 0.001645577372983098, 0.023263119161128998, 0.023867905139923096, 0.03364291414618492, 0.0041244919411838055, -0.037862345576286316, 0.024374235421419144, -0.02002822421491146, -0.012974744662642479, -0.025330640375614166, -0.01776379719376564, -0.004106910899281502, 0.025893229991197586, 0.0028709699399769306, 0.01352327037602663, -0.02012667804956436, 0.017890380695462227, 0.021265923976898193, 0.014669548720121384, 0.02652614563703537, 0.0006192891160026193, 0.005383288487792015, -0.03322097286581993, -0.02143470011651516, 0.011751110665500164, 0.001861823140643537, 0.014683613553643227, 0.019296856597065926, 0.006838991306722164, -0.015696275979280472, -0.0026213203091174364, -0.01507742702960968, 0.014402318745851517, -0.013122424483299255, 0.0060091703198850155, 0.027159059420228004, 0.03161758929491043, 0.030042335391044617, -0.018199805170297623, 0.001641182112507522, -0.018031027168035507, -0.03113938681781292, 0.013417785055935383, -0.04419148713350296, 0.020703332498669624, -0.0010856239823624492, 0.011877693235874176, 0.0033790594898164272, -0.005720842629671097, -0.014950844459235668, -0.020436102524399757, 0.0013387897051870823, 0.00120429543312639, 0.003709581447765231, 0.0075457459315657616, -0.022067613899707794, -0.01146981492638588, 0.0022644270211458206, 0.010485281236469746, 0.001576132606714964, -0.01064702682197094, 0.029085932299494743, 0.016976170241832733, -0.0023470574524253607, -0.023670997470617294, -0.6188496351242065, -0.032292697578668594, -0.0018881945870816708, -0.03206766024231911, -0.0015699792420491576, -0.015907248482108116, -0.018579553812742233, -0.005580195225775242, -0.02303808368742466, 0.038284286856651306, -0.02125185914337635, -0.003692000638693571, 0.01055560540407896, -0.01630106195807457, 0.002658240497112274, -0.0228552408516407, 0.0021519088186323643, -0.02351628616452217, 0.019760994240641594, 0.007320709526538849, -0.011758143082261086, -0.0022943145595490932, 0.002684611827135086, -0.007384001277387142, -0.017130883410573006, -0.002331234747543931, -0.0124824782833457, 0.009451521560549736, 0.009233517572283745, 0.012960679829120636, -0.045907389372587204, 0.01960628107190132, 0.004237010143697262, -0.026174526661634445, 0.04047838971018791, -0.008614667691290379, -0.011631559580564499, 0.018298257142305374, -0.005538000725209713, 0.014085860922932625, -0.023769451305270195, -0.015794729813933372, 0.013178683817386627, 0.013741274364292622, -0.015400916337966919, 0.02902967296540737, 0.02407887578010559, -0.0062799169681966305, -0.02171599492430687, -0.013980375602841377, 0.0038994557689875364, 9.400316776009277e-05, 0.020562684163451195, -0.008305243216454983, 0.001870613661594689, 0.012637190520763397, 0.04036587104201317, -0.01109709870070219, 0.0041104271076619625, 0.006061913445591927, -0.0005656672292388976, 0.010956451296806335, -0.03246147558093071, -0.027960751205682755, -0.026554275304079056, 0.017552824690937996, 0.006575277075171471, 0.012876291759312153, 0.007566843181848526, 0.0006012686644680798, 0.0006219262722879648, 0.0273700300604105, 0.012967712245881557, -0.015949442982673645, -0.003273573936894536, 0.014753937721252441, 0.009887529537081718, -0.008755316026508808, 0.014177282340824604, 0.03184262663125992, 0.01597757264971733, -0.015147751197218895, 0.004535886459052563, -0.009205387905240059, 0.03670903295278549, 0.011476847343146801, -0.0021114726550877094, -0.011279940605163574, 0.027074670419096947, 0.011181487701833248, 0.019198402762413025, 0.012292603962123394, -0.03797486424446106, -0.032911546528339386, 0.014950844459235668, 0.02133624628186226, -0.017215270549058914, 0.012264474295079708, 0.018874913454055786, -0.03232082724571228, -0.015007102862000465, -0.01691991090774536, 0.03226456791162491, 0.008741251192986965, 0.033333491533994675, 0.027271578088402748, -0.03811550885438919, -0.008431825786828995, 0.016216672956943512, -0.034177377820014954, -0.009887529537081718, 0.004964861553162336, -0.016230737790465355, -0.016793327406048775, 0.0190436914563179, -0.025091538205742836, -0.0014706469373777509, -0.01700429990887642, -0.0035232233349233866, -0.008431825786828995, 0.03203953430056572, -0.013881921768188477, 0.009282744489610195, -0.017398113384842873, 0.01880458928644657, 0.026399562135338783, -0.009029578417539597, -0.02469772659242153, -0.01411399058997631, 0.018438905477523804, -0.01486645545810461, -0.010921289213001728, 0.012524672783911228, -0.015414981171488762, 0.003029198618605733, 0.013157586567103863, 0.04433213546872139, 0.004757406655699015, 0.007320709526538849, -0.013600626960396767, -0.02661053277552128, -0.009071772918105125, 0.018452970311045647, -0.004258107393980026, -0.03904378414154053, -0.031111259013414383, -0.019395310431718826, 0.007974721491336823, 0.00753871351480484, -0.007180062122642994, -0.01479613222181797, -0.009226485155522823, 0.008867833763360977, 0.018692070618271828, 0.0015866812318563461, -0.011504977010190487, -0.005668099969625473, -0.029986076056957245, -0.004170202650129795, -0.016512032598257065, 0.008248983882367611, -0.0002192125393776223, -0.007000736426562071, 0.0017906202701851726, 0.004426884464919567, -0.010703285224735737, -0.022967759519815445, 0.027679456397891045, -0.025640064850449562, -0.02097056247293949, -0.004455014131963253, -0.03530255705118179, 0.007039414253085852, 0.012243377044796944, -0.014282767660915852, 0.02431797794997692, -0.003632225329056382, -0.004908602684736252, -0.007876267656683922, -0.0011735287262126803, 0.0032014918979257345, 0.030970610678195953, 0.00027382338885217905, -0.02171599492430687, 0.01592131331562996, 0.01710275374352932, 0.037862345576286316, 0.014331994578242302, -0.021125275641679764, 0.010991613380610943, 0.016512032598257065, 0.016877716407179832, -0.022630205377936363, 0.033389750868082047, -0.017355918884277344, 0.011118195950984955, 0.007278515491634607, -0.01790444552898407, 0.013108359649777412, 0.03755291923880577, 0.009078805334866047, 0.015400916337966919, -0.016793327406048775, -0.010133662261068821, 0.010829868726432323, -0.03029550239443779, 0.012095697224140167, -0.019198402762413025, -0.010548572987318039, -0.0057243588380515575, 0.003667387180030346, -0.006547147873789072, -0.008874866180121899, -0.012032405473291874, 0.0010363972978666425, 0.031589459627866745, -0.005727875046432018, 0.007447292562574148, -0.026357367634773254, 0.0109775485470891, 0.003607611870393157, 0.017046494409441948, -0.013649853877723217, 0.012855194509029388, -0.010407925583422184, 0.004834762774407864, -0.020154807716608047, 0.02073146216571331, -0.007482454646378756, -0.03133629262447357, 0.004335463512688875, 0.009627331048250198, 0.032770901918411255, 0.004455014131963253, 0.023009954020380974, -0.01798883266746998, 0.02247549220919609, 0.001355491578578949, 0.044219616800546646, -0.005696229636669159, -0.007285547908395529, 0.0034511415287852287, 2.4956714696600102e-05, -0.031083129346370697, 0.012749708257615566, -0.010112565010786057, 0.03831241652369499, -0.014395286329090595, -0.017173076048493385, -0.005541516933590174, -0.03673716261982918, 0.011504977010190487, -0.0021765222772955894, 0.005056282505393028, 0.02925470843911171, -0.009444489143788815, 0.004764438606798649, 0.0032120405230671167, 0.015358722768723965, 0.0036181604955345392, -0.013417785055935383, 0.0012675868347287178, -0.002943051978945732, 0.015302463434636593, 0.02209574356675148, -0.005077379755675793, -0.003825615858659148, -0.011554203927516937, -0.007000736426562071, -0.013860825449228287, -0.02111121080815792, -0.01001411210745573, 0.024866502732038498, -0.04067529737949371, 0.042700622230768204, 0.020886175334453583, 0.004103394690901041, 0.014894585125148296, -0.003488061483949423, 0.03203953430056572, -0.024852437898516655, -0.03777795657515526, 0.014613290317356586, -0.008635764941573143, -0.03198327496647835, -0.019662540405988693, -0.018579553812742233, 0.007405098062008619, -0.0017202964518219233, 0.00044391912524588406, -0.008895963430404663, -0.008544344455003738, -0.012299636378884315, 0.01227150671184063, 0.00034810291253961623, 0.008094271644949913, 0.014683613553643227, -0.006234206724911928, 0.008052077144384384, -0.020759591832756996, 0.02016887255012989, 0.012257441878318787, -0.00979610811918974, -0.005608324892818928, 0.011645624414086342, -0.01616041362285614, -0.03367104381322861, -0.00027338386280462146, 0.00030239243642427027, -0.033896081149578094, 0.0037728729657828808, -0.007362904027104378, 0.008558409288525581, -0.041491053998470306, 0.015597823075950146, 0.012728611938655376, 0.02039390802383423, 0.0034300442785024643, 0.019437503069639206, 0.013530302792787552, -0.007890332490205765, 0.002086859429255128, -0.010949418880045414, 0.019001496955752373, 0.048551566898822784, 0.018931172788143158, 0.003938133828341961, 0.0009801381966099143, -0.0057524885050952435, 0.003681452013552189, -0.024613337591290474, 0.0019743412267416716, 0.00083157914923504, 0.010365731082856655, -0.016371386125683784, -0.019578151404857635, 0.01804509200155735, 0.000988049665465951, 0.04005644842982292, 0.003213798627257347, 0.010351666249334812, -0.013811598531901836, -0.00954294204711914, -0.013094295747578144, 0.014444512315094471, -0.0026828537229448557, 0.010239148512482643, 0.024416429921984673, 0.011554203927516937, -0.009922690689563751, 0.007974721491336823, 0.028326435014605522, -0.006793281063437462, -0.021448764950037003, 0.012166020460426807, 0.004585112910717726, 0.008741251192986965, 0.008649829775094986, -0.016933975741267204, 0.011322135105729103, -0.0005085291340947151, -0.003305219579488039, 0.014036634936928749, 0.015344657935202122, 0.004138556774705648, 0.02450081892311573, 0.008023947477340698, 0.013502173125743866, 0.009824237786233425, -0.014472641982138157, -0.003920552786439657, 0.010140694677829742, -0.007004252634942532, -0.0392969511449337, 0.0036533225793391466, 0.004820697940886021, -0.040872205048799515, -0.0015937135322019458, 0.028256110846996307, 0.006543631665408611, 0.0013546126428991556, -0.011371362023055553, -0.00489805405959487, -0.03575263172388077, -0.00665614940226078, -0.030351761728525162, 0.006933928467333317, -0.015302463434636593, -0.004057684447616339, -0.003370269201695919, -0.00360409589484334, 0.0011708915699273348, -0.01611821912229061, 0.00015108633670024574, -0.016286997124552727, -0.011153358034789562, -0.05805934593081474, -0.013396687805652618, -0.0014935021754354239, -0.0040471358224749565, 0.010639994405210018, -0.002587916562333703, 0.0031751205679029226, 0.021941032260656357, -0.008895963430404663, -0.02040797285735607, 0.0025527547113597393, -0.01992977038025856, 0.005615356843918562, -0.023305313661694527, -0.0038642939180135727, -0.02077365666627884, -0.012384024448692799, 0.022264521569013596, -0.008769379928708076, -0.013797533698379993, -0.020182935521006584, 0.0024630918633192778, 0.005253189243376255, 0.02464146725833416, 0.016174478456377983, 0.006772183813154697, 0.022925565019249916, -0.02337563782930374, -0.0009230001596733928, -0.01850922964513302, -0.019845381379127502, -0.03575263172388077, 0.003143474692478776, 0.008396663703024387, 0.03558385372161865, 0.008488085120916367, 0.010316504165530205, -0.020858045667409897, 0.0006166520179249346, -0.014233541674911976, 0.012264474295079708, -0.0017071107868105173, 0.01286222692579031, -0.014015537686645985, 0.012151956558227539, -0.0037974861916154623, -0.005457128398120403, -0.029901688918471336, 0.01696210540831089, -0.030182983726263046, 0.02012667804956436, 0.01038682833313942, 0.00979610811918974, 0.01720120571553707, 0.022405169904232025, 0.002146634506061673, -0.045260410755872726, 0.00016075585153885186, 0.0010592525359243155, 0.014310897327959538, -0.0038783587515354156, -0.011125228367745876, -0.00249122129753232, -0.014753937721252441, -0.015246204100549221, 0.00893112551420927, -0.02469772659242153, 0.006431113462895155, -0.015218074433505535, -0.004261623602360487, -0.009317906573414803, -0.01479613222181797, 0.004824214149266481, -0.029339097440242767, -0.009233517572283745, 0.029142191633582115, 0.016807392239570618, 0.031026870012283325, -0.013586562126874924, 0.01060483232140541, -0.03825615718960762, -0.016371386125683784, 0.0005313843721523881, -0.023614738136529922, -0.010478248819708824, -0.006104107480496168, 0.011540139093995094, 0.016427643597126007, 0.021842578426003456, 0.005741939879953861, 0.017580954357981682, 0.015696275979280472, -0.0022556365001946688, -0.006336176302284002, -0.010316504165530205, 0.00018888538761530071, -0.02040797285735607, -0.013234943151473999, 0.012672352604568005, -0.003428286174312234, 0.009690622799098492, 0.004658953286707401, -0.0021817965898662806, 0.0020112611819058657, -0.01486645545810461, -0.004092846531420946, -0.018340451642870903, -0.041097242385149, -0.02139250561594963, 0.008445890620350838, -0.006329143885523081, -0.0020851013250648975, -0.04621681571006775, -0.017679408192634583, 0.018340451642870903, 0.008248983882367611, 0.014627354219555855, 0.012151956558227539, 0.03699032962322235, -0.0291703213006258, -0.002804162446409464, 0.029929818585515022, 0.016849586740136147, -0.008066141977906227, -0.007503551431000233, -0.04402271285653114, 0.013755339197814465, 0.015274333767592907, 0.007376968860626221, 0.040731556713581085, 0.026216719299554825, -0.015386851504445076, 0.016610486432909966, 0.014247605577111244, 0.003319284413009882, 0.010077403858304024, -0.0047187283635139465, -0.010288374498486519, 0.0036427739541977644, -0.012334798462688923, -0.025175927206873894, -0.023670997470617294, -0.019156208261847496, 0.011209617368876934, 0.013206813484430313, 0.030829962342977524, -0.02473991923034191, -0.02039390802383423, 0.02393822930753231, 0.008628732524812222, 0.05066128075122833, 0.013502173125743866, 0.008874866180121899, 0.02379758097231388, 0.009810172952711582, -0.010625929571688175, 0.011385426856577396, 0.01260202843695879, -0.014268702827394009, 0.020759591832756996, 0.01578066498041153, 0.002853388898074627, -0.009739848785102367, 0.012285571545362473, 0.010119597427546978, -0.03924069181084633, -0.04843904823064804, 0.00979610811918974, 0.02147689461708069, 0.005604808684438467, -0.03597766533493996, -0.03029550239443779, -0.025316575542092323, -0.0006333538913168013, -0.02552754618227482, 0.023066213354468346, 0.010232116095721722, -0.00808020681142807, 0.011174455285072327, 0.008938157930970192, 0.010253213346004486, -0.0006386282038874924, -0.004715212155133486, 0.0220535509288311, 0.004750374238938093, 0.0012702239910140634, -0.003263025311753154, 0.010211018845438957, -0.006227174308151007, 0.03763730823993683, -0.009339002892374992, 0.011589366011321545, 0.01029540691524744, -0.0010935354512184858, 0.006272884551435709, -0.008115368895232677, 0.004416335839778185, 0.03701845929026604, -0.035499464720487595, -0.010935354046523571, -0.008136466145515442, -0.016497967764735222, 0.01635732129216194, -0.01556969340890646, 0.014142120257019997, -0.004500724375247955, -0.013931148685514927, 0.003860777709633112, 0.02383977547287941, 0.02383977547287941, -0.03203953430056572, 0.0069655743427574635, 0.00284987292252481, -0.032348956912755966, -0.02708873525261879, 0.0057384236715734005, 0.032489605247974396, -0.037384141236543655, 0.007679361384361982, 0.00850214995443821, -0.021589413285255432, 0.021279988810420036, 0.021181534975767136, -0.0037447435315698385, -0.029282838106155396, 0.03237708657979965, -0.03381169214844704, 0.0217581894248724, 0.0013704354641959071, -0.010119597427546978, -0.026891829445958138, -0.0018547907238826156, -0.014978974126279354, -0.029085932299494743, 0.004535886459052563, -0.025316575542092323, -0.022123873233795166, -0.011715948581695557, 0.016807392239570618, 0.006733505986630917, -0.01059779990464449, 0.013333396054804325, 0.0033526881597936153, 0.003055569948628545, -0.0007427953532896936, -0.015907248482108116, -0.001497897319495678, 0.02303808368742466, 0.0010144211119040847, 0.0036533225793391466, 0.03043614886701107, -0.0035232233349233866, 0.012116794474422932, -0.013910051435232162, -0.005288351327180862, -0.009866432286798954, -0.05817186459898949, -0.02082991600036621, 0.009810172952711582, 0.0017132640350610018, -2.734662666625809e-05, 0.0012798935640603304, -0.016807392239570618, -0.010351666249334812, -0.012566866353154182, -0.002035874640569091, 0.010140694677829742, 0.0028692118357867002, 0.00724335340783, 0.023263119161128998, -0.0001748206268530339, 0.008523247204720974, -0.017918508499860764, -0.020562684163451195, -0.018973367288708687, -0.003681452013552189, -0.03175823763012886, -0.0187483299523592, -0.033614784479141235, 0.05037998408079147, -0.006336176302284002, -0.03887500613927841, -0.021097145974636078, -0.01507742702960968, -0.038424935191869736, -0.020464232191443443, 0.0025597871281206608, 0.01822793483734131, 0.012883324176073074, 0.01691991090774536, 0.002827017568051815, 0.03586514666676521, 0.006561212241649628, 0.004992991220206022, -0.026962153613567352, 0.01293255016207695, -0.0007502672378905118, -0.013635789044201374, 0.01276377309113741, 0.01776379719376564, -0.021069016307592392, 0.01860768347978592, 0.012095697224140167, -0.027806038036942482, -0.024247653782367706, 0.026934023946523666, -0.01507742702960968, -0.010042241774499416, 0.021884772926568985, -0.009078805334866047, 0.007021833676844835, -0.0124824782833457, 0.020281389355659485, -0.03133629262447357, -0.009324938990175724, 0.026596467941999435, -0.006592858117073774, 0.01635732129216194, -0.015035232529044151, 0.017018364742398262, 0.009036610834300518, 0.008734218776226044, 0.01610415428876877, -0.012144924141466618, 0.006304530426859856, 0.004483143333345652, 0.044078972190618515, 0.01936718076467514, 0.010464184917509556, 0.029367227107286453, -0.016737069934606552, -0.0018125964561477304, -0.0076371668837964535, 0.015007102862000465, 0.0009669525315985084, -0.008741251192986965, 0.04368515685200691, -0.01686365157365799, 0.009852367453277111, -0.010119597427546978, 0.0030696347821503878, -0.022461427375674248, -0.01714494824409485, -0.016216672956943512, -0.0027637260500341654, -0.022700529545545578, 0.014402318745851517, 0.019943835213780403, -0.021786319091916084, -0.0032419280614703894, -0.012876291759312153, 0.02261614054441452, 0.003713097656145692, -0.014142120257019997, -0.0058650067076087, -0.001107600168325007, -0.0034863033797591925, 0.019437503069639206, 0.01006333902478218, -0.006417048629373312, 0.01448670681566, 0.003507400630041957, -0.0218566432595253, 0.015485305339097977, 0.19926957786083221, -0.03164571896195412, 0.01357249729335308, 0.02873431332409382, 0.017046494409441948, -0.016694875434041023, 0.04447278380393982, 0.008213821798563004, 0.0015277849743142724, -0.004535886459052563, 0.006993704009801149, 0.005847425665706396, -0.016526097431778908, 7.318072312045842e-05, 0.019240597262978554, -0.026272978633642197, -0.021322181448340416, -0.03575263172388077, -0.017609084025025368, -0.004008457530289888, 0.006051364820450544, 0.0010768334614112973, -0.007074576336890459, -0.02265833504498005, -0.0030450213234871626, 0.005330545362085104, -4.8842091928236187e-05, -0.003489819588139653, 0.018481099978089333, 0.0006667576963081956, -0.016751134768128395, 0.005154735874384642, -0.008354470133781433, 0.0019479697803035378, 0.00027360362582840025, -0.009704687632620335, 0.010534508153796196, -0.0005085291340947151, 0.006188496015965939, 0.025119667872786522, 0.02199729159474373, 0.021350311115384102, 0.003723646281287074, -0.025049345567822456, 0.015429046005010605, 0.011061936616897583, -0.003920552786439657, 0.008790477178990841, 0.007834073156118393, 0.007398066110908985, -0.022461427375674248, 0.02271459437906742, 0.02341783232986927, 0.020618943497538567, -0.006733505986630917, 0.0007511462899856269, -0.019732864573597908, 0.015021167695522308, 0.00022184968111105263, -0.005073863547295332, -0.027313772588968277, -0.008509182371199131, -0.00019910431001335382, 0.024416429921984673, -0.010689220391213894, 0.012475445866584778, -0.0075879404321312904, -0.02393822930753231, 0.007953624241054058, -0.029001543298363686, -0.012166020460426807, -0.014782067388296127, 0.0001852593122748658, -0.011540139093995094, -0.019845381379127502, -0.03901565447449684, 0.02209574356675148, 0.02774977870285511, 0.00071290775667876, 0.04866408184170723, -0.003966263495385647, -0.03881875053048134, 0.004648404661566019, -0.012032405473291874, 0.005295383743941784, -0.02389603480696678, 0.009767978452146053, -0.015218074433505535, -0.0217581894248724, -0.011083033867180347, -0.016512032598257065, -0.009500748477876186, 0.004208880476653576, 0.024866502732038498, -1.9572547898860648e-05, 0.004578080493956804, 0.007524648681282997, 0.0060091703198850155, -0.010450120083987713, -0.03113938681781292, -0.007165997289121151, 0.059240784496068954, 0.02133624628186226, 0.0028305337764322758, -0.0009414601372554898, 0.019353115931153297, -0.0032559928949922323, 0.00015734955377411097, -0.0021712479647248983, 0.00013306585606187582, 0.009669525548815727, -0.02794668637216091, 0.011441685259342194, 0.0036111280787736177, -0.0025545128155499697, 0.011962082237005234, 0.011209617368876934, -0.009831270202994347, 0.016413578763604164, -0.010407925583422184, -0.006990187801420689, -0.02223639190196991, -0.0056891972199082375, 0.011448717676103115, -3.656289118225686e-05, -0.0274684838950634, 0.006751086562871933, 0.0009871706133708358, -0.027693521231412888, 0.01706055924296379, 0.0004386448417790234, -0.04005644842982292, 0.009353067725896835, 0.003994393162429333, 0.0006364305736497045, -0.008614667691290379, 0.014824260957539082, -0.006733505986630917, -0.02864992432296276, 0.013600626960396767, -0.00876234844326973, 0.024289848282933235, 0.004683566279709339, -0.02147689461708069, 0.01436715666204691, -0.014542966149747372, 0.002616046229377389, 0.015583758242428303, -0.013052101247012615, -0.019915705546736717, -0.020014159381389618, 0.008023947477340698, 0.00514770345762372, 0.009641395881772041, -0.0008403696701861918, 0.024374235421419144, -0.01189879048615694, -0.0006496162968687713, 0.022827111184597015, 0.008509182371199131, -0.028284240514039993, 0.0031803948804736137, 0.01556969340890646, 0.006895250640809536, -0.015907248482108116, -0.0070183174684643745, -0.18081660568714142, -0.015063362196087837, 0.011385426856577396, -0.040309615433216095, 0.018438905477523804, 0.006192012224346399, 0.012721579521894455, 0.007735620252788067, -0.010921289213001728, 0.0010759544093161821, 0.021701930090785027, -0.01852329447865486, -0.004891021642833948, -0.0062166256830096245, -0.0007252143695950508, 0.007932526990771294, -0.008790477178990841, 0.009620298631489277, 0.012327766045928001, 0.0008922334527596831, 0.03150507062673569, -0.027018411085009575, 0.009901593439280987, -0.00951481331139803, 0.017820056527853012, 0.012398089282214642, 0.00930384173989296, 0.04239119961857796, -0.017130883410573006, -0.03133629262447357, -0.01114632561802864, -0.01469767838716507, 0.0291703213006258, 0.006420564837753773, 0.03125190734863281, 0.030829962342977524, 0.011744078248739243, -0.019353115931153297, -0.018551424145698547, -0.015893183648586273, 0.02227858640253544, 0.013445914722979069, 0.02421952411532402, -0.008614667691290379, -0.03189888596534729, 0.007651231717318296, 0.007433227729052305, -0.02153315395116806, -0.0012078116415068507, -0.01303100399672985, 0.016933975741267204, 0.00989456195384264, 0.014317929744720459, -0.004198331851512194, 0.024753984063863754, 0.030492408201098442, -0.005344610195606947, 0.0034810290671885014, -0.006708892527967691, -0.02012667804956436, -0.0005155614926479757, -0.00027514193789102137, 0.0008816848858259618, -0.0005181986489333212, 0.008530279621481895, -0.035218168050050735, -0.008115368895232677, 0.004978926386684179, -0.04008457809686661, 0.0020552135538309813, -0.03386795148253441, 0.003231379436329007, -0.027806038036942482, -0.014360124245285988, 0.0275669377297163, 0.0389031358063221, -0.0305767972022295, 0.016765199601650238, 0.04413522779941559, 0.008263048715889454, -0.01992977038025856, 0.002658240497112274, -0.0190436914563179, 0.021139340475201607, -0.004001425579190254, 0.0054395473562181, 0.01587911881506443, 0.025738518685102463, -0.01528839860111475, -0.00930384173989296, 0.02002822421491146, -0.010000047273933887, 0.017609084025025368, -0.011561236344277859, -0.0008579505956731737, 0.014085860922932625, 0.010731414891779423, -0.034683708101511, -0.006125204730778933, -0.016455773264169693, 0.007566843181848526, 0.006336176302284002, -0.00893112551420927, -0.010970516130328178, 0.02011261321604252, 0.022222327068448067, -0.02275678887963295, 0.02115340530872345, 0.02841082401573658, -0.0028199851512908936, -0.02007041871547699, -0.008692024275660515, 0.0023910098243504763, 0.0035408043768256903, 0.00166315829847008, -0.0007827920489944518, -0.018579553812742233, -0.02845301851630211, 0.03237708657979965, -0.0019884060602635145, 0.05164581537246704, -0.008368534967303276, 0.0025756098330020905, 0.021983226761221886, -0.009978950023651123, -0.034599319100379944, -0.10464184731245041, -0.03547133505344391, 0.01926872693002224, 0.03142068162560463, -0.0163432564586401, 0.0330803245306015, -0.00514770345762372, 0.04126601666212082, -0.008045044727623463, 0.03966263309121132, -0.005538000725209713, -0.00419481610879302, 0.024135135114192963, 0.01601976715028286, 0.01448670681566, -0.011863628402352333, 0.000535779632627964, -0.015893183648586273, -0.02794668637216091, 0.029929818585515022, 0.017116818577051163, -0.01043605525046587, 0.01050637848675251, -0.03206766024231911, 0.013474044390022755, -0.02030951902270317, -0.03819989785552025, 0.019114013761281967, 0.005682164803147316, -0.0036849682219326496, 0.012039437890052795, -0.015302463434636593, 0.008635764941573143, -0.01648390293121338, 0.010914256796240807, -0.004581596702337265, 0.015400916337966919, -0.01983131654560566, 0.015738470479846, -0.0001563606201671064, -0.01033760141581297, 0.023024018853902817, 0.01227150671184063, -0.00850214995443821, -0.025457223877310753, 0.004444465506821871, -0.009592168964445591, 0.01917027309536934, 0.003646290162578225, -0.028157657012343407, -0.04008457809686661, -0.002616046229377389, -0.04829839989542961, 0.009177258238196373, 0.01340372022241354, -0.010464184917509556, -0.0014407592825591564, 0.025330640375614166, -0.010745479725301266, -0.008973319083452225, -0.0007515858160331845, -0.01818574033677578, -0.01399444043636322, 0.0025580290239304304, -0.014500771649181843, 0.006339692510664463, -0.00867092702537775, -0.0244586244225502, 0.025654129683971405, -0.004630823619663715, 0.0003617281618062407, 0.023333443328738213, -0.012018340639770031, 0.0038502290844917297, -0.016948040574789047, -0.006097075063735247, -0.00090541917597875, -0.0163432564586401, 0.011272908188402653, -0.0011269391980022192, -0.017791926860809326, -0.011526074260473251, 0.01686365157365799, -0.013818630948662758, -0.005214511416852474, 0.011371362023055553, -0.01436715666204691, -0.008656862191855907, 0.0101266298443079, -0.05403682217001915, -0.007250385824590921, 0.03265838325023651, 0.006838991306722164, -0.018073221668601036, 0.023291248828172684, 0.0007696063257753849, -0.011315102688968182, 0.0051125418394804, 0.005956427659839392, 0.0005973129300400615, -0.020984627306461334, -0.021870708093047142, -0.07206784933805466, 0.019845381379127502, 0.0018653393490239978, -0.010421990416944027, 0.014240573160350323, -0.012686417438089848, 0.007531681098043919, -0.010239148512482643, 0.009838302619755268, 0.02658240497112274, -0.02827017568051815, 0.011990210972726345, -0.023249054327607155, -0.03400859981775284, -0.00909287016838789, -0.00926164723932743, 0.018734265118837357, -0.00954294204711914, 0.0049261837266385555, -0.001507566892541945, 0.032995935529470444, -0.02578071318566799, 0.02524625137448311, 0.019001496955752373, -0.00014284526696428657, -0.002306621288880706, -0.043797675520181656, 0.014219476841390133, -0.009831270202994347, -0.01582285948097706, 0.006895250640809536, -0.014057731255888939, 0.013474044390022755, 0.01486645545810461, 0.0017739183967933059, -0.016286997124552727, 0.0008311396231874824, 0.026357367634773254, 0.007946591824293137, 0.03443054109811783, -0.01361469179391861, -0.04272875189781189, 0.015485305339097977, -0.006090042646974325, -0.002596707083284855, -0.008220854215323925, -0.02257394604384899, -0.008755316026508808, 0.04601990804076195, 0.010372763499617577, 0.041716091334819794, 0.00188467837870121, -0.019859446212649345, -0.05068941041827202, -0.011997243389487267, 0.001956760184839368, 0.024796178564429283, -0.009578104130923748, 0.014099925756454468, 0.01291145384311676, 0.03744040057063103, 0.008199757896363735, 0.02040797285735607, -0.015541564673185349, -0.003920552786439657, -0.013537335209548473, -0.004630823619663715, -0.008277113549411297, -0.0011849564034491777, -0.03220830857753754, 0.009985982440412045, -0.004106910899281502, 0.015091491863131523, -0.000993323978036642, 0.0028094365261495113, -0.00954294204711914, 0.001296595437452197, 0.014514836482703686, -0.016765199601650238, 0.01714494824409485, 0.018579553812742233, -0.02516186237335205, -0.002225748961791396, -0.0005595139227807522, 0.02568225935101509, 2.2415717467083596e-05, -0.019353115931153297, 0.00808020681142807, -0.015400916337966919, -0.001359886839054525, 0.0024103489704430103, 0.0016622792463749647, -0.007046446669846773, 0.019156208261847496, 0.0021079564467072487, -0.017876315861940384, -0.001709747826680541, -0.008888931013643742, 0.027876362204551697, -0.008938157930970192, 0.0003894181572832167, -0.010091467760503292, 0.004514789208769798, -0.007496519014239311, -0.007897364906966686, -0.009613266214728355, -0.045204151421785355, -0.021884772926568985, 0.039465729147195816, 0.03831241652369499, 0.015963507816195488, -0.008959254249930382, -0.012130859307944775, 0.004205364268273115, -0.012447316199541092, 0.016427643597126007, -0.004585112910717726, -0.014978974126279354, -0.024613337591290474, 0.03310845419764519, 0.02846708334982395, 0.015555629506707191, 0.05316480994224548, 0.00037579290801659226, 0.0204501673579216, 0.006691311486065388, 0.03043614886701107, -0.0024208975955843925, 0.025119667872786522, 0.02021106518805027, -0.005291867535561323, -0.010520443320274353, -0.014782067388296127, -0.010049274191260338, -0.005232092458754778, -0.013713144697248936, -0.021350311115384102, 0.01728559471666813, 0.012166020460426807, 0.09485276788473129, 0.018171675503253937, -0.01244028378278017, 0.009458553977310658, -0.009268679656088352, 0.0109775485470891, 0.008895963430404663, 0.02303808368742466, 0.0071097384206950665, -0.011315102688968182, -0.002434962196275592, -0.011751110665500164, -0.01244028378278017, -0.014838325791060925, 0.02105495147407055, -0.0037869377993047237, -0.010358698666095734, 0.015625953674316406, 0.005625905469059944, -0.0023329928517341614, 0.0421099029481411, -0.012243377044796944, 0.006339692510664463, 0.005203962791711092, -0.01168078649789095, 0.022180132567882538, 0.029142191633582115, 0.004163170233368874, 0.0028938252944499254, -0.018199805170297623, 0.032770901918411255, 0.01822793483734131, -0.050239335745573044, -0.019381245598196983, -0.009233517572283745, -0.008663894608616829, 0.0049402485601603985, -0.013438882306218147, -0.005485258065164089, 0.005464160814881325, 0.00570326205343008, 0.00209740805439651, -0.014268702827394009, -0.026652727276086807, 0.02516186237335205, -0.012841129675507545, -0.01490864995867014, -0.020225130021572113, -0.028002945706248283], metadata={'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='doc_0', node_type=<ObjectType.DOCUMENT: '4'>, metadata={'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, hash='3b095b0e25cdf965d950cdbd7feb8024030e7645998c1a33dc4427affca624ab'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='e470fa0d001e50b3ec3088022462a94ea7c87dd80106411b7d120f90b379e977', node_type=<ObjectType.TEXT: '1'>, metadata={}, hash='71418de3d50e604c2581574f1abf2248e5cc3ab7c74a3182c37cb1152d0cfd21')}, text='LLM Variants and Meta\\'s Open Source Before shedding light on four major trends, I\\'d share the latest Meta\\'s Llama 2 and Code Llama. Meta\\'s Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. Benchmarking revealed Llama 2\\'s superior performance over most extant open-source chat models. Human-centric evaluations, focusing on safety and utility metrics, positioned Llama 2-Chat as a potential contender against proprietary, closed-source counterparts. The development trajectory of Llama 2 emphasized rigorous fine-tuning methodologies. Meta\\'s transparent delineation of these processes aims to catalyze community-driven advancements in LLMs, underscoring a commitment to collaborative and responsible AI development. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model;Codel Llama - Python specialized for Python;and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions. Based on its benchmark testing, Code Llama outperformed state-of-the-art publicly available LLMs (except GPT-4) on code tasks. Llama 2, Llama 2-Chat, and Code Llama are key steps in LLM development but still have a way to go compared to GPT-4. Meta\\'s open access and commitment to improving these models promise transparent and faster LLM progress in the future. Please refer to the LLM and Llama variants below:  From LLMs to Multimodal LLMs, like OpenAI\\'s ChatGPT (GPT-3.5), primarily focus on understanding and generating human language. They\\'ve been instrumental in tasks like text generation, translation, and even creative writing. However, their scope is limited to text. Enter multimodal models like GPT-4. These are a new breed of AI models that can understand and generate not just text, but also images, sounds, and potentially other types of data. The term \"multimodal\" refers to their ability to process multiple modes or', start_char_idx=0, end_char_idx=2117, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')"
            ]
          },
          "metadata": {},
          "execution_count": 14
        }
      ],
      "source": [
        "nodes[0]"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "EV0ll57p46Dc"
      },
      "source": [
        "# Load Indexes"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "HbT3-kRO4Qpt"
      },
      "outputs": [],
      "source": [
        "# Create your index\n",
        "from llama_index.core import VectorStoreIndex\n",
        "\n",
        "index = VectorStoreIndex.from_vector_store(vector_store)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "sb61DWU84bHP"
      },
      "outputs": [],
      "source": [
        "query_engine = index.as_query_engine()"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "G32W2LMMCmnv"
      },
      "outputs": [],
      "source": [
        "res = query_engine.query(\"How many parameters LLaMA2 model has?\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 35
        },
        "id": "obc20cU5Cxf2",
        "outputId": "df3839ea-527d-4ae3-8a66-2520c643bdf2"
      },
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'The Llama 2 model is available in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 18
        }
      ],
      "source": [
        "res.response"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "oIAO-saJCzYe",
        "outputId": "7aa982e4-bc27-478c-bee1-c72d30a4b9bd"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Node ID\t f707756065d1f788b41fb97fcef81979e1fd241dbfa4034a24bec8e57b648482\n",
            "Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
            "Text\t I. Llama 2: Revolutionizing Commercial Use Unlike its predecessor Llama 1, which was limited to research use, Llama 2 represents a major advancement as an open-source commercial model. Businesses can now integrate Llama 2 into products to create AI-powered applications. Availability on Azure and AWS facilitates fine-tuning and adoption. However, restrictions apply to prevent exploitation. Companies with over 700 million active daily users cannot use Llama 2. Additionally, its output cannot be used to improve other language models.  II. Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. While 7B, 13B, and 70B have already been released, the 34B model is still awaited. The pretrained variant, trained on a whopping 2 trillion tokens, boasts a context window of 4096 tokens, twice the size of its predecessor Llama 1. Meta also released a Llama 2 fine-tuned model for chat applications that was trained on over 1 million human annotations. Such extensive training comes at a cost, with the 70B model taking a staggering 1720320 GPU hours to train. The context window's length determines the amount of content the model can process at once, making Llama 2 a powerful language model in terms of scale and efficiency.  III. Safety Considerations: A Top Priority for Meta Meta's commitment to safety and alignment shines through in Llama 2's design. The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model's practical applicability and user experience. Thus, achieving\n",
            "Score\t 0.7122361910421624\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
            "Node ID\t 636f98cf8754c3a4759da02aa11a3f2aa7cdeb848a4980ec99300ece4a2e92fd\n",
            "Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
            "Text\t The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model's practical applicability and user experience. Thus, achieving an optimum balance that allows the model to be both helpful and safe is of utmost importance. To strike the right balance between helpfulness and safety, Meta employed two reward models - one for helpfulness and another for safety - to optimize the model's responses. The 34B parameter model has reported higher safety violations than other variants, possibly contributing to the delay in its release.  IV. Helpfulness Comparison: Llama 2 Outperforms Competitors Llama 2 emerges as a strong contender in the open-source language model arena, outperforming its competitors in most categories. The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding. Despite being smaller, Llam a2's performance rivals that of Chat GPT 3.5, a significantly larger closed-source model. While GPT 4 and PalM-2-L, with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2's impressive ability to compete with larger models highlights its efficiency and potential in the market. However, Llama 2 does face challenges in coding and math problems, where models like Chat GPT 4 excel, given their significantly larger size. Chat GPT 4 performed significantly better than Llama 2 for coding (HumanEval benchmark)and math problem tasks (GSM8k benchmark). Open-source AI technologies, like Llama 2, continue to advance, offering\n",
            "Score\t 0.7047493574957753\n",
            "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
          ]
        }
      ],
      "source": [
        "for src in res.source_nodes:\n",
        "  print(\"Node ID\\t\", src.node_id)\n",
        "  print(\"Title\\t\", src.metadata['title'])\n",
        "  print(\"Text\\t\", src.text)\n",
        "  print(\"Score\\t\", src.score)\n",
        "  print(\"-_\"*20)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "d4xxZHbdN0lK"
      },
      "source": [
        "# Evaluate the retrieval process and quality of answers\n",
        "\n",
        "We can evaluate our RAG system with a dataset of questions and associated chunks. Given a question, we can see if the RAG system retrieves the correct chunks of text that can answer the question.\n",
        "\n",
        "You can generate a synthetic dataset with an LLM such as `gpt-3.5-turbo` or create an authentic and manually curated dataset.\n",
        "\n",
        "Note that a **well curated dataset will always be a better option**, especially for a specific domain or use case.\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "SuYIj1tD1Hwv"
      },
      "source": [
        "In our example, we will generate a synthetic dataset using `gpt-3.5-turbo` to make it simple.\n",
        "\n",
        "This is the default prompt that the `generate_question_context_pairs` function will uses:\n",
        "\n",
        "```python\n",
        "DEFAULT_QA_GENERATE_PROMPT_TMPL = \"\"\"\\\n",
        "Context information is below.\n",
        "\n",
        "---------------------\n",
        "{context_str}\n",
        "---------------------\n",
        "\n",
        "Given the context information and no prior knowledge,\n",
        "generate only questions based on the below query.\n",
        "\n",
        "You are a Teacher/Professor. Your task is to setup \\\n",
        "{num_questions_per_chunk} questions for an upcoming \\\n",
        "quiz/examination. The questions should be diverse in nature \\\n",
        "across the document. Restrict the questions to the \\\n",
        "context information provided.\"\n",
        "\"\"\"\n",
        "```\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "jhHLA3he1Hww",
        "outputId": "78e8c284-971e-45d2-a83b-03efa4759856"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stderr",
          "text": [
            "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 108/108 [04:26<00:00,  2.47s/it]\n"
          ]
        }
      ],
      "source": [
        "from llama_index.core.evaluation import generate_question_context_pairs\n",
        "from llama_index.llms.openai import OpenAI\n",
        "\n",
        "llm = OpenAI(model=\"gpt-3.5-turbo\")\n",
        "rag_eval_dataset = generate_question_context_pairs(\n",
        "    nodes,\n",
        "    llm=llm,\n",
        "    num_questions_per_chunk=1\n",
        ")\n",
        "# We can save the dataset as a json file for later use.\n",
        "rag_eval_dataset.save_json(\"./rag_eval_dataset.json\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "mNDd5i921Hww"
      },
      "outputs": [],
      "source": [
        "# We can also load the dataset from a previously saved json file.\n",
        "from llama_index.core.evaluation import EmbeddingQAFinetuneDataset\n",
        "rag_eval_dataset = EmbeddingQAFinetuneDataset.from_json(\n",
        "    \"./rag_eval_dataset.json\"\n",
        ")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "qOx3vDWA1Hww"
      },
      "source": [
        "### Evaluation for Hit Rate and Mean Reciprocal Rank (MRR)\n",
        "\n",
        "We will make use of `RetrieverEvaluator` available in Llama-index. We will measure the Hit Rate and Mean Reciprocal Rank (MRR).\n",
        "\n",
        "**Hit Rate:**\n",
        "\n",
        "Think of the Hit Rate like playing a game of guessing. You're given a question and you need to guess the correct answer from a list of options. The Hit Rate measures how often you guess the correct answer by only looking at your top few guesses. If you often find the right answer in your first few guesses, you have a high Hit Rate. So, in the context of a retrieval system, it's about how frequently the system finds the correct document within its top 'k' picks (where 'k' is a number you decide, like top 5 or top 10).\n",
        "\n",
        "**Mean Reciprocal Rank (MRR):**\n",
        "\n",
        "MRR is a bit like measuring how quickly you can find a treasure in a list of boxes. Imagine you have a row of boxes and only one of them has a treasure. The MRR calculates how close to the start of the row the treasure box is, on average. If the treasure is always in the first box you open, you're doing great and have an MRR of 1. If it's in the second box, the score is 1/2, since you took two tries to find it. If it's in the third box, your score is 1/3, and so on. MRR averages these scores across all your searches. So, for a retrieval system, MRR looks at where the correct document ranks in the system's guesses. If it's usually near the top, the MRR will be high, indicating good performance.\n",
        "In summary, Hit Rate tells you how often the system gets it right in its top guesses, and MRR tells you how close to the top the right answer usually is. Both metrics are useful for evaluating the effectiveness of a retrieval system, like how well a search engine or a recommendation system works."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "eARSzx8I1Hww"
      },
      "outputs": [],
      "source": [
        "import pandas as pd\n",
        "\n",
        "def display_results_retriever(name, eval_results):\n",
        "    \"\"\"Display results from evaluate.\"\"\"\n",
        "\n",
        "    metric_dicts = []\n",
        "    for eval_result in eval_results:\n",
        "        metric_dict = eval_result.metric_vals_dict\n",
        "        metric_dicts.append(metric_dict)\n",
        "\n",
        "    full_df = pd.DataFrame(metric_dicts)\n",
        "\n",
        "    hit_rate = full_df[\"hit_rate\"].mean()\n",
        "    mrr = full_df[\"mrr\"].mean()\n",
        "\n",
        "    metric_df = pd.DataFrame(\n",
        "        {\"Retriever Name\": [name], \"Hit Rate\": [hit_rate], \"MRR\": [mrr]}\n",
        "    )\n",
        "\n",
        "    return metric_df"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "hD5YflG51Hww",
        "outputId": "981e6fc7-911f-4c15-835d-70096c8ba2e3"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "    Retriever Name  Hit Rate       MRR\n",
            "0  Retriever top_2  0.768519  0.634259\n",
            "    Retriever Name  Hit Rate       MRR\n",
            "0  Retriever top_4  0.851852  0.659722\n",
            "    Retriever Name  Hit Rate       MRR\n",
            "0  Retriever top_6  0.898148  0.668364\n",
            "    Retriever Name  Hit Rate       MRR\n",
            "0  Retriever top_8  0.907407  0.669687\n",
            "     Retriever Name  Hit Rate       MRR\n",
            "0  Retriever top_10  0.907407  0.669687\n"
          ]
        }
      ],
      "source": [
        "from llama_index.core.evaluation import RetrieverEvaluator\n",
        "\n",
        "# We can evaluate the retievers with different top_k values.\n",
        "for i in [2, 4, 6, 8, 10]:\n",
        "    retriever = index.as_retriever(similarity_top_k=i)\n",
        "    retriever_evaluator = RetrieverEvaluator.from_metric_names(\n",
        "        [\"mrr\", \"hit_rate\"], retriever=retriever\n",
        "    )\n",
        "    eval_results = await retriever_evaluator.aevaluate_dataset(rag_eval_dataset, workers=32)\n",
        "    print(display_results_retriever(f\"Retriever top_{i}\", eval_results))"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9y6uofcJ1Hwx"
      },
      "source": [
        "### Evaluation using Relevance and Faithfulness metrics.\n",
        "\n",
        "Here, we evaluate the answer generated by the LLM. Is the answer using the correct context? Is the answer faithful to the context? Is the answer relevant to the question?\n",
        "\n",
        "An LLM will answer these questions, more specifically `gpt-4o`.\n",
        "\n",
        "**`FaithfulnessEvaluator`**\n",
        "Evaluates if the answer is faithful to the retrieved contexts (in other words, whether there's an hallucination).\n",
        "\n",
        "**`RelevancyEvaluator`**\n",
        "Evaluates whether the retrieved context and answer are relevant to the user question.\n",
        "\n",
        "\n",
        "Now, let's see how the top_k value affects these two metrics."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ckjE4fcD1Hwx",
        "outputId": "6d251465-0e6d-4d67-b608-5c766f1f804c"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "top_2 faithfulness_score: 1.0\n",
            "top_2 relevancy_score: 1.0\n",
            "top_4 faithfulness_score: 1.0\n",
            "top_4 relevancy_score: 1.0\n",
            "top_6 faithfulness_score: 1.0\n",
            "top_6 relevancy_score: 1.0\n",
            "top_8 faithfulness_score: 1.0\n",
            "top_8 relevancy_score: 1.0\n",
            "top_10 faithfulness_score: 1.0\n",
            "top_10 relevancy_score: 1.0\n"
          ]
        }
      ],
      "source": [
        "from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator, BatchEvalRunner\n",
        "from llama_index.llms.openai import OpenAI\n",
        "\n",
        "# Define an LLM as a judge\n",
        "llm_gpt4 = OpenAI(temperature=0, model=\"gpt-4o\")\n",
        "\n",
        "# Initiate the faithfulnes and relevancy evaluator objects\n",
        "faithfulness_evaluator = FaithfulnessEvaluator(llm=llm_gpt4)\n",
        "relevancy_evaluator = RelevancyEvaluator(llm=llm_gpt4)\n",
        "\n",
        "# Extract the questions from the dataset\n",
        "queries = list(rag_eval_dataset.queries.values())\n",
        "# Limit to first 20 question to save cost (!!remove this line in production!!)\n",
        "batch_eval_queries = queries[:20]\n",
        "\n",
        "# The batch evaluator runs the evaluation in batches\n",
        "runner = BatchEvalRunner(\n",
        "{\"faithfulness\": faithfulness_evaluator, \"relevancy\": relevancy_evaluator},\n",
        "workers=32,\n",
        ")\n",
        "\n",
        "# Define a for-loop to try different `similarity_top_k` values\n",
        "for i in [2, 4, 6, 8, 10]:\n",
        "    # Set query engine with different number of returned chunks\n",
        "    query_engine = index.as_query_engine(similarity_top_k=i)\n",
        "\n",
        "    # Run the evaluation\n",
        "    eval_results = await runner.aevaluate_queries(\n",
        "        query_engine, queries=batch_eval_queries\n",
        "    )\n",
        "\n",
        "    # Printing the results\n",
        "    faithfulness_score = sum(result.passing for result in eval_results['faithfulness']) / len(eval_results['faithfulness'])\n",
        "    print(f\"top_{i} faithfulness_score: {faithfulness_score}\")\n",
        "\n",
        "    relevancy_score = sum(result.passing for result in eval_results['relevancy']) / len(eval_results['relevancy'])\n",
        "    print(f\"top_{i} relevancy_score: {relevancy_score}\")\n"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "### Correctness"
      ],
      "metadata": {
        "id": "YmlmP2Px4THB"
      }
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "aUulxzuh1Hwx"
      },
      "outputs": [],
      "source": [
        "from llama_index.core.evaluation import CorrectnessEvaluator\n",
        "\n",
        "query = (\n",
        "    \"Can you explain the theory of relativity proposed by Albert Einstein in\"\n",
        "    \" detail?\"\n",
        ")\n",
        "\n",
        "reference = \"\"\"\n",
        "Certainly! Albert Einstein's theory of relativity consists of two main components: special relativity and general relativity. Special relativity, published in 1905, introduced the concept that the laws of physics are the same for all non-accelerating observers and that the speed of light in a vacuum is a constant, regardless of the motion of the source or observer. It also gave rise to the famous equation E=mcΒ², which relates energy (E) and mass (m).\n",
        "\n",
        "General relativity, published in 1915, extended these ideas to include the effects of gravity. According to general relativity, gravity is not a force between masses, as described by Newton's theory of gravity, but rather the result of the warping of space and time by mass and energy. Massive objects, such as planets and stars, cause a curvature in spacetime, and smaller objects follow curved paths in response to this curvature. This concept is often illustrated using the analogy of a heavy ball placed on a rubber sheet, causing it to create a depression that other objects (representing smaller masses) naturally move towards.\n",
        "\n",
        "In essence, general relativity provided a new understanding of gravity, explaining phenomena like the bending of light by gravity (gravitational lensing) and the precession of the orbit of Mercury. It has been confirmed through numerous experiments and observations and has become a fundamental theory in modern physics.\n",
        "\"\"\"\n",
        "\n",
        "response = \"\"\"\n",
        "Certainly! Albert Einstein's theory of relativity consists of two main components: special relativity and general relativity. Special relativity, published in 1905, introduced the concept that the laws of physics are the same for all non-accelerating observers and that the speed of light in a vacuum is a constant, regardless of the motion of the source or observer. It also gave rise to the famous equation E=mcΒ², which relates energy (E) and mass (m).\n",
        "\n",
        "However, general relativity, published in 1915, extended these ideas to include the effects of magnetism. According to general relativity, gravity is not a force between masses but rather the result of the warping of space and time by magnetic fields generated by massive objects. Massive objects, such as planets and stars, create magnetic fields that cause a curvature in spacetime, and smaller objects follow curved paths in response to this magnetic curvature. This concept is often illustrated using the analogy of a heavy ball placed on a rubber sheet with magnets underneath, causing it to create a depression that other objects (representing smaller masses) naturally move towards due to magnetic attraction.\n",
        "\"\"\""
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "evaluator = CorrectnessEvaluator(llm=llm_gpt4)\n",
        "\n",
        "result = evaluator.evaluate(\n",
        "    query=query,\n",
        "    response=response,\n",
        "    reference=reference,\n",
        ")"
      ],
      "metadata": {
        "id": "CYIjkAP74bly"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "result.score"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "-3b-bgvA4dAz",
        "outputId": "7ced2102-6372-4794-82ad-1c7e60438088"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "2.0"
            ]
          },
          "metadata": {},
          "execution_count": 34
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "result.feedback"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 71
        },
        "id": "KNEhRQAo4dT0",
        "outputId": "4a5d7db9-b399-49ea-c90e-b1e076640a92"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "'The generated answer is mostly relevant but contains significant inaccuracies. General relativity does not involve magnetism; it describes gravity as the warping of spacetime by mass and energy, not magnetic fields. The analogy of magnets is incorrect and misleading.'"
            ],
            "application/vnd.google.colaboratory.intrinsic+json": {
              "type": "string"
            }
          },
          "metadata": {},
          "execution_count": 35
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "ZOlwVWZb49H4"
      },
      "execution_count": null,
      "outputs": []
    }
  ],
  "metadata": {
    "colab": {
      "provenance": [],
      "include_colab_link": true
    },
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "codemirror_mode": {
        "name": "ipython",
        "version": 3
      },
      "file_extension": ".py",
      "mimetype": "text/x-python",
      "name": "python",
      "nbconvert_exporter": "python",
      "pygments_lexer": "ipython3",
      "version": "3.11.8"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}