File size: 6,910 Bytes
9c1e8a7 5a84661 9c1e8a7 5a84661 9c1e8a7 5a84661 129499e 5a84661 9c1e8a7 5a84661 9c1e8a7 5a84661 9c1e8a7 5a84661 9c1e8a7 5a84661 9c1e8a7 5a84661 8798577 9c1e8a7 5a84661 9c1e8a7 5a84661 9c1e8a7 680fe32 5a84661 139a897 5a84661 680fe32 1d11211 9c1e8a7 da1bd08 5a84661 139a897 680fe32 1d11211 9c1e8a7 da1bd08 5a84661 129499e 5a84661 9c1e8a7 129499e 5a84661 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import asyncio
import json
import logging
import os
import pickle
import chromadb
import logfire
from custom_retriever import CustomRetriever
from dotenv import load_dotenv
from llama_index.core import Document, SimpleKeywordTableIndex, VectorStoreIndex
from llama_index.core.ingestion import IngestionPipeline
from llama_index.core.node_parser import SentenceSplitter
from llama_index.core.retrievers import (
KeywordTableSimpleRetriever,
VectorIndexRetriever,
)
from llama_index.core.schema import NodeWithScore, QueryBundle
from llama_index.embeddings.cohere import CohereEmbedding
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.vector_stores.chroma import ChromaVectorStore
from utils import init_mongo_db
load_dotenv()
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logging.getLogger("httpx").setLevel(logging.WARNING)
logfire.configure()
if not os.path.exists("data/chroma-db-all_sources"):
# Download the vector database from the Hugging Face Hub if it doesn't exist locally
# https://huggingface.co/datasets/towardsai-buster/ai-tutor-vector-db/tree/main
logfire.warn(
f"Vector database does not exist at 'data/chroma-db-all_sources', downloading from Hugging Face Hub"
)
from huggingface_hub import snapshot_download
snapshot_download(
repo_id="towardsai-buster/ai-tutor-vector-db",
local_dir="data",
repo_type="dataset",
)
logfire.info(f"Downloaded vector database to 'data/chroma-db-all_sources'")
def create_docs(input_file: str) -> list[Document]:
with open(input_file, "r") as f:
documents = []
for line in f:
data = json.loads(line)
documents.append(
Document(
doc_id=data["doc_id"],
text=data["content"],
metadata={ # type: ignore
"url": data["url"],
"title": data["name"],
"tokens": data["tokens"],
"retrieve_doc": data["retrieve_doc"],
"source": data["source"],
},
excluded_llm_metadata_keys=[
"title",
"tokens",
"retrieve_doc",
"source",
],
excluded_embed_metadata_keys=[
"url",
"tokens",
"retrieve_doc",
"source",
],
)
)
return documents
def setup_database(db_collection, dict_file_name):
db = chromadb.PersistentClient(path=f"data/{db_collection}")
chroma_collection = db.get_or_create_collection(db_collection)
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
embed_model = CohereEmbedding(
api_key=os.environ["COHERE_API_KEY"],
model_name="embed-english-v3.0",
input_type="search_query",
)
index = VectorStoreIndex.from_vector_store(
vector_store=vector_store,
transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=0)],
show_progress=True,
use_async=True,
)
vector_retriever = VectorIndexRetriever(
index=index,
similarity_top_k=15,
embed_model=embed_model,
use_async=True,
)
with open(f"data/{db_collection}/{dict_file_name}", "rb") as f:
document_dict = pickle.load(f)
with open("data/keyword_retriever_sync.pkl", "rb") as f:
keyword_retriever: KeywordTableSimpleRetriever = pickle.load(f)
# # Creating the keyword index and retriever
# logfire.info("Creating nodes from documents")
# documents = create_docs("data/all_sources_data.jsonl")
# pipeline = IngestionPipeline(
# transformations=[SentenceSplitter(chunk_size=800, chunk_overlap=0)]
# )
# all_nodes = pipeline.run(documents=documents, show_progress=True)
# # with open("data/all_nodes.pkl", "wb") as f:
# # pickle.dump(all_nodes, f)
# # all_nodes = pickle.load(open("data/all_nodes.pkl", "rb"))
# logfire.info(f"Number of nodes: {len(all_nodes)}")
# keyword_index = SimpleKeywordTableIndex(
# nodes=all_nodes, max_keywords_per_chunk=10, show_progress=True, use_async=False
# )
# # with open("data/keyword_index.pkl", "wb") as f:
# # pickle.dump(keyword_index, f)
# # keyword_index = pickle.load(open("data/keyword_index.pkl", "rb"))
# logfire.info("Creating keyword retriever")
# keyword_retriever = KeywordTableSimpleRetriever(index=keyword_index)
# with open("data/keyword_retriever_sync.pkl", "wb") as f:
# pickle.dump(keyword_retriever, f)
return CustomRetriever(vector_retriever, document_dict, keyword_retriever, "OR")
# Setup retrievers
# custom_retriever_transformers: CustomRetriever = setup_database(
# "chroma-db-transformers",
# "document_dict_transformers.pkl",
# )
# custom_retriever_peft: CustomRetriever = setup_database(
# "chroma-db-peft", "document_dict_peft.pkl"
# )
# custom_retriever_trl: CustomRetriever = setup_database(
# "chroma-db-trl", "document_dict_trl.pkl"
# )
# custom_retriever_llama_index: CustomRetriever = setup_database(
# "chroma-db-llama_index",
# "document_dict_llama_index.pkl",
# )
# custom_retriever_openai_cookbooks: CustomRetriever = setup_database(
# "chroma-db-openai_cookbooks",
# "document_dict_openai_cookbooks.pkl",
# )
# custom_retriever_langchain: CustomRetriever = setup_database(
# "chroma-db-langchain",
# "document_dict_langchain.pkl",
# )
custom_retriever_all_sources: CustomRetriever = setup_database(
"chroma-db-all_sources",
"document_dict_all_sources.pkl",
)
# Constants
CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
MONGODB_URI = os.getenv("MONGODB_URI")
AVAILABLE_SOURCES_UI = [
"Transformers Docs",
"PEFT Docs",
"TRL Docs",
"LlamaIndex Docs",
"LangChain Docs",
"OpenAI Cookbooks",
"Towards AI Blog",
# "All Sources",
# "RAG Course",
]
AVAILABLE_SOURCES = [
"transformers",
"peft",
"trl",
"llama_index",
"langchain",
"openai_cookbooks",
"tai_blog",
# "all_sources",
# "rag_course",
]
mongo_db = (
init_mongo_db(uri=MONGODB_URI, db_name="towardsai-buster")
if MONGODB_URI
else logfire.warn("No mongodb uri found, you will not be able to save data.")
)
__all__ = [
# "custom_retriever_transformers",
# "custom_retriever_peft",
# "custom_retriever_trl",
# "custom_retriever_llama_index",
# "custom_retriever_openai_cookbooks",
# "custom_retriever_langchain",
"custom_retriever_all_sources",
"mongo_db",
"CONCURRENCY_COUNT",
"AVAILABLE_SOURCES_UI",
"AVAILABLE_SOURCES",
]
|