File size: 8,688 Bytes
a2a9a44
 
 
 
 
 
3e7bb9e
 
a2a9a44
 
84f8c13
 
0cfc98f
 
 
 
 
a2a9a44
 
 
 
 
 
bc02571
9b897d3
 
 
3e7bb9e
9b897d3
 
a2a9a44
 
 
a938093
a2a9a44
a938093
 
 
 
 
 
3e7bb9e
a2a9a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84f8c13
a2a9a44
 
 
 
84f8c13
872ce15
84f8c13
3e7bb9e
 
 
 
 
 
 
 
 
 
a2a9a44
3e7bb9e
 
 
 
 
 
 
a2a9a44
3e7bb9e
a2a9a44
 
3e7bb9e
 
 
 
 
 
a2a9a44
3e7bb9e
a2a9a44
3e7bb9e
 
 
f1d2f05
 
a2a9a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d2f05
a2a9a44
d41011f
a2a9a44
 
 
 
 
 
 
84f8c13
a2a9a44
 
 
 
 
 
 
f1d2f05
a2a9a44
 
 
9b897d3
f1d2f05
a2a9a44
 
f1d2f05
 
a2a9a44
f1d2f05
 
a2a9a44
 
3e7bb9e
 
a2a9a44
 
 
3e7bb9e
a2a9a44
0cfc98f
 
3e7bb9e
a2a9a44
f0db5cb
 
 
a2a9a44
3e7bb9e
 
a2a9a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e7bb9e
 
 
a2a9a44
beeea5a
a2a9a44
 
 
beeea5a
3e7bb9e
 
 
 
 
a2a9a44
 
 
 
 
3e7bb9e
a2a9a44
3e7bb9e
 
a2a9a44
3e7bb9e
 
a2a9a44
 
 
 
 
 
 
 
 
 
 
3e7bb9e
a2a9a44
3e7bb9e
a2a9a44
 
3e7bb9e
a2a9a44
 
 
 
3e7bb9e
 
 
 
 
 
 
 
 
a2a9a44
 
 
 
3e7bb9e
 
 
 
 
 
 
 
 
a2a9a44
 
 
 
f1d2f05
 
 
a2a9a44
 
 
872ce15
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
import os
import logging
from typing import Optional
from datetime import datetime

import chromadb
from llama_index.core.tools import QueryEngineTool, FunctionTool, ToolMetadata
from llama_index.agent.openai import OpenAIAgent
from llama_index.vector_stores.chroma import ChromaVectorStore
from llama_index.core import VectorStoreIndex
from llama_index.embeddings.openai import OpenAIEmbedding
from llama_index.llms.openai import OpenAI
from llama_index.core.vector_stores import (
    MetadataFilters,
    MetadataFilter,
    FilterCondition,
)
import gradio as gr
from gradio.themes.utils import (
    fonts,
)

from utils import init_mongo_db
from tutor_prompts import (
    TEXT_QA_TEMPLATE,
    QueryValidation,
    system_message_validation,
    system_message_openai_agent,
)
from call_openai import api_function_call

logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
logging.getLogger("httpx").setLevel(logging.WARNING)

# # This variables are used to intercept API calls
# # launch mitmweb
# cert_file = "/Users/omar/Downloads/mitmproxy-ca-cert.pem"
# os.environ["REQUESTS_CA_BUNDLE"] = cert_file
# os.environ["SSL_CERT_FILE"] = cert_file
# os.environ["HTTPS_PROXY"] = "http://127.0.0.1:8080"

CONCURRENCY_COUNT = int(os.getenv("CONCURRENCY_COUNT", 64))
MONGODB_URI = os.getenv("MONGODB_URI")

AVAILABLE_SOURCES_UI = [
    "Gen AI 360: LLMs",
    "Gen AI 360: LangChain",
    "Gen AI 360: Advanced RAG",
    "Towards AI Blog",
    "Activeloop Docs",
    "HF Transformers Docs",
    "Wikipedia",
    "OpenAI Docs",
    "LangChain Docs",
]

AVAILABLE_SOURCES = [
    "llm_course",
    "langchain_course",
    "advanced_rag_course",
    "towards_ai",
    "activeloop",
    "hf_transformers",
    "wikipedia",
    "openai",
    "langchain_docs",
]

# Initialize MongoDB
mongo_db = (
    init_mongo_db(uri=MONGODB_URI, db_name="towardsai-buster")
    if MONGODB_URI
    else logger.warning("No mongodb uri found, you will not be able to save data.")
)

# Initialize vector store and index
db2 = chromadb.PersistentClient(path="scripts/ai-tutor-db")
chroma_collection = db2.get_or_create_collection("ai-tutor-db")
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
index = VectorStoreIndex.from_vector_store(vector_store=vector_store)

# Initialize OpenAI models
llm = OpenAI(temperature=0, model="gpt-3.5-turbo-0125", max_tokens=None)
# embeds = OpenAIEmbedding(model="text-embedding-3-large", mode="text_search")
embeds = OpenAIEmbedding(model="text-embedding-3-large", mode="similarity")

query_engine = index.as_query_engine(
    llm=llm,
    similarity_top_k=5,
    embed_model=embeds,
    streaming=True,
    text_qa_template=TEXT_QA_TEMPLATE,
)

query_engine_tools = [
    QueryEngineTool(
        query_engine=query_engine,
        metadata=ToolMetadata(
            name="AI_information",
            description="""The 'AI_information' tool serves as a comprehensive repository for insights into the field of artificial intelligence. When utilizing this tool, the input should be the user's complete question. The input can also be adapted to focus on specific aspects or further details of the current topic under discussion. This dynamic input approach allows for a tailored exploration of AI subjects, ensuring that responses are relevant and informative. Employ this tool to fetch nuanced information on topics such as model training, fine-tuning, LLM augmentation, and more, thereby facilitating a rich, context-aware dialogue.""",
        ),
    )
]


def initialize_agent():
    agent = OpenAIAgent.from_tools(
        query_engine_tools,
        llm=llm,
        verbose=True,
        system_prompt=system_message_openai_agent,
    )
    return agent


def reset_agent(agent_state):
    agent_state = initialize_agent()  # Reset the agent by reassigning a new instance
    chatbot = [[None, None]]
    return "Agent has been reset.", chatbot


def log_emails(email: gr.Textbox):
    collection = "email_data-test"

    logger.info(f"User reported {email=}")
    email_document = {"email": email}

    try:
        mongo_db[collection].insert_one(email_document)
        logger.info("")
    except:
        logger.info("Something went wrong logging")

    return ""


def format_sources(completion) -> str:
    if len(completion.source_nodes) == 0:
        return ""

    # Mapping of source system names to user-friendly names
    display_source_to_ui = {
        src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
    }

    documents_answer_template: str = (
        "πŸ“ Here are the sources I used to answer your question:\n\n{documents}"
    )
    document_template: str = "[πŸ”— {source}: {title}]({url}), relevance: {score:2.2f}"

    documents = "\n".join(
        [
            document_template.format(
                title=src.metadata["title"],
                score=src.score,
                source=display_source_to_ui.get(
                    src.metadata["source"], src.metadata["source"]
                ),
                url=src.metadata["url"],
            )
            for src in completion.source_nodes
        ]
    )

    return documents_answer_template.format(documents=documents)


def add_sources(history, completion):
    if completion is None:
        yield history

    formatted_sources = format_sources(completion)
    if formatted_sources == "":
        yield history

    history[-1][1] += "\n\n" + formatted_sources
    yield history


def user(user_input, history, agent_state):
    agent = agent_state
    return "", history + [[user_input, None]]


def get_answer(history, agent_state):
    user_input = history[-1][0]
    history[-1][1] = ""

    completion = agent_state.stream_chat(user_input)

    for token in completion.response_gen:
        history[-1][1] += token
        yield history, completion

    logger.info(f"completion: {history[-1][1]=}")


example_questions = [
    "What is the LLama model?",
    "What is a Large Language Model?",
    "What is an embedding?",
]

theme = gr.themes.Soft()
with gr.Blocks(
    theme=gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="blue",
        font=fonts.GoogleFont("Source Sans Pro"),
        font_mono=fonts.GoogleFont("IBM Plex Mono"),
    ),
    fill_height=True,
) as demo:

    agent_state = gr.State(initialize_agent())

    with gr.Row():
        gr.HTML(
            "<h3><center>Towards AI πŸ€–: A Question-Answering Bot for anything AI-related</center></h3>"
        )

    chatbot = gr.Chatbot(
        elem_id="chatbot",
        show_copy_button=True,
        scale=2,
        likeable=True,
        show_label=False,
    )

    with gr.Row():
        question = gr.Textbox(
            label="What's your question?",
            placeholder="Ask a question to the AI tutor here...",
            lines=1,
            scale=7,
            show_label=False,
        )
        submit = gr.Button(value="Send", variant="primary", scale=1)
        reset_button = gr.Button("Reset Chat", variant="secondary", scale=1)

    with gr.Row():
        examples = gr.Examples(
            examples=example_questions,
            inputs=question,
        )
        with gr.Row():
            email = gr.Textbox(
                label="Want to receive updates about our AI tutor?",
                placeholder="Enter your email here...",
                lines=1,
                scale=6,
            )
            submit_email = gr.Button(value="Submit", variant="secondary", scale=1)

    gr.Markdown(
        "This application uses GPT3.5-Turbo to search the docs for relevant information and answer questions."
    )

    completion = gr.State()

    submit.click(
        user, [question, chatbot, agent_state], [question, chatbot], queue=False
    ).then(
        get_answer,
        inputs=[chatbot, agent_state],
        outputs=[chatbot, completion],
    ).then(
        add_sources, inputs=[chatbot, completion], outputs=[chatbot]
    )
    # .then(
    # save_completion, inputs=[completion, chatbot]
    # )

    question.submit(
        user, [question, chatbot, agent_state], [question, chatbot], queue=False
    ).then(
        get_answer,
        inputs=[chatbot, agent_state],
        outputs=[chatbot, completion],
    ).then(
        add_sources, inputs=[chatbot, completion], outputs=[chatbot]
    )
    # .then(
    #     save_completion, inputs=[completion, chatbot]
    # )

    reset_button.click(
        reset_agent, inputs=[agent_state], outputs=[agent_state, chatbot]
    )
    submit_email.click(log_emails, email, email)
    email.submit(log_emails, email, email)

demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
demo.launch(debug=False, share=False)