Spaces:
Sleeping
Sleeping
File size: 130,904 Bytes
5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 755b36e f8ecd7b 0bfedbd f8ecd7b 755b36e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b 0bfedbd 5d7ba1e f8ecd7b c2b7d18 f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b 4a643f4 f8ecd7b 4a643f4 f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b 08b8fbf f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b 755b36e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd c2b7d18 0bfedbd c2b7d18 0bfedbd f8ecd7b 0bfedbd f8ecd7b 755b36e f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd c2b7d18 0bfedbd c2b7d18 0bfedbd f8ecd7b c2b7d18 f8ecd7b 755b36e f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b c2b7d18 f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b 0bfedbd f8ecd7b 0bfedbd f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd c2b7d18 0bfedbd f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b c2b7d18 f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd c2b7d18 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 0bfedbd c2b7d18 0bfedbd c2b7d18 0bfedbd c2b7d18 f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 0bfedbd c2b7d18 f8ecd7b c2b7d18 f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 5d7ba1e f8ecd7b 0bfedbd c2b7d18 f8ecd7b 5d7ba1e f8ecd7b 0bfedbd f8ecd7b 5d7ba1e f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 f8ecd7b 0bfedbd c2b7d18 f8ecd7b c2b7d18 0bfedbd c2b7d18 f8ecd7b c2b7d18 f8ecd7b c2b7d18 e68e63d c2b7d18 f8ecd7b e68e63d c2b7d18 f8ecd7b e68e63d f8ecd7b c2b7d18 f8ecd7b e68e63d f8ecd7b 0bfedbd f8ecd7b c2b7d18 e68e63d f8ecd7b e68e63d c2b7d18 f8ecd7b e68e63d c2b7d18 e68e63d 0bfedbd f8ecd7b 0bfedbd c2b7d18 f8ecd7b a5280c8 0bfedbd a5280c8 f8ecd7b c2b7d18 f8ecd7b a5280c8 0bfedbd a5280c8 c2b7d18 0bfedbd a5280c8 c2b7d18 a5280c8 c2b7d18 0bfedbd a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 0bfedbd a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 c2b7d18 a5280c8 0bfedbd a5280c8 c2b7d18 a5280c8 0bfedbd f8ecd7b c2b7d18 5d7ba1e f8ecd7b 755b36e f8ecd7b 0bfedbd c2b7d18 5d7ba1e f8ecd7b c2b7d18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/06-Evaluate_RAG.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5BGJ3fxhOk2V"
},
"source": [
"# Install Packages and Setup Variables\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "QPJzr-I9XQ7l",
"collapsed": true,
"outputId": "a68229ea-1d76-475b-9eb2-05dca0ef431e",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/67.3 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m337.0/337.0 kB\u001b[0m \u001b[31m21.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m35.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m584.3/584.3 kB\u001b[0m \u001b[31m25.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m40.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.5/15.5 MB\u001b[0m \u001b[31m47.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m273.8/273.8 kB\u001b[0m \u001b[31m11.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.0/94.0 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m150.7/150.7 kB\u001b[0m \u001b[31m9.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m679.1/679.1 kB\u001b[0m \u001b[31m22.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.4/76.4 kB\u001b[0m \u001b[31m4.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m37.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m26.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.2/13.2 MB\u001b[0m \u001b[31m30.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m64.0/64.0 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m52.5/52.5 kB\u001b[0m \u001b[31m3.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m149.7/149.7 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m7.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m9.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m55.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.2/54.2 kB\u001b[0m \u001b[31m3.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.8/62.8 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m3.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m18.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m187.4/187.4 kB\u001b[0m \u001b[31m12.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m295.8/295.8 kB\u001b[0m \u001b[31m17.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.4/71.4 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m34.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m425.7/425.7 kB\u001b[0m \u001b[31m20.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m157.3/157.3 kB\u001b[0m \u001b[31m9.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m5.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.3/49.3 kB\u001b[0m \u001b[31m2.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n"
]
}
],
"source": [
"!pip install -q llama-index==0.10.57 openai==1.37.0 tiktoken==0.7.0 chromadb==0.5.5 llama-index-vector-stores-chroma==0.1.10 llama-index-llms-gemini==0.1.11"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"id": "riuXwpSPcvWC"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Set the following API Keys in the Python environment. Will be used later.\n",
"os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_API_KEY>\"\n",
"os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_API_KEY>\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "km-KQOrgr3VB"
},
"outputs": [],
"source": [
"# Allows running asyncio in environments with an existing event loop, like Jupyter notebooks.\n",
"\n",
"import nest_asyncio\n",
"\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0BwVuJXlzHVL"
},
"source": [
"# Create a VectoreStore\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "SQP87lHczHKc"
},
"outputs": [],
"source": [
"import chromadb\n",
"\n",
"# create client and a new collection\n",
"# chromadb.EphemeralClient saves data in-memory.\n",
"chroma_client = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
"chroma_collection = chroma_client.create_collection(\"mini-llama-articles\")"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "zAaGcYMJzHAN"
},
"outputs": [],
"source": [
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"\n",
"# Define a storage context object using the created vector database.\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "I9JbAzFcjkpn"
},
"source": [
"# Load the Dataset (CSV)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_Tif8-JoRH68"
},
"source": [
"## Download\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "4fQaa1LN1mXL"
},
"source": [
"The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model.\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "fQtpDvUzKNzI",
"outputId": "811bbd6b-8f04-45a9-d3c9-b19128daf306",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
" Dload Upload Total Spent Left Speed\n",
"100 169k 100 169k 0 0 273k 0 --:--:-- --:--:-- --:--:-- 274k\n"
]
}
],
"source": [
"!curl -o ./mini-dataset.csv https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "zk-4alIxROo8"
},
"source": [
"## Load the Articles\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "_WER5lt0N7c5",
"outputId": "7cf8a364-fe04-4957-aacd-42f6fb0386d5",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"14"
]
},
"metadata": {},
"execution_count": 7
}
],
"source": [
"import csv\n",
"\n",
"rows = []\n",
"\n",
"# Load the file as a JSON\n",
"with open(\"./mini-dataset.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n",
" csv_reader = csv.reader(file)\n",
"\n",
" for idx, row in enumerate(csv_reader):\n",
" if idx == 0:\n",
" continue\n",
" # Skip header row\n",
" rows.append(row)\n",
"\n",
"# The number of characters in the dataset.\n",
"len(rows)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wxEStggPdxYs"
},
"source": [
"# Convert to Document obj\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "lFvW_886dxKX"
},
"outputs": [],
"source": [
"from llama_index.core import Document\n",
"from llama_index.core.schema import TextNode\n",
"\n",
"# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
"documents = [\n",
" Document(\n",
" text=row[1],\n",
" metadata={\"title\": row[0], \"url\": row[2], \"source_name\": row[3]},\n",
" )\n",
" for row in rows\n",
"]\n",
"# By default, the node/chunks ids are set to random uuids. To ensure same id's per run, we manually set them.\n",
"for idx, doc in enumerate(documents):\n",
" doc.id_ = f\"doc_{idx}\""
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"collapsed": true,
"id": "Njoc3XEVkKkf",
"outputId": "83f885cd-371f-4497-cb8c-65105e876585"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"Document(id_='doc_0', embedding=None, metadata={'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={}, text='LLM Variants and Meta\\'s Open Source Before shedding light on four major trends, I\\'d share the latest Meta\\'s Llama 2 and Code Llama. Meta\\'s Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. Benchmarking revealed Llama 2\\'s superior performance over most extant open-source chat models. Human-centric evaluations, focusing on safety and utility metrics, positioned Llama 2-Chat as a potential contender against proprietary, closed-source counterparts. The development trajectory of Llama 2 emphasized rigorous fine-tuning methodologies. Meta\\'s transparent delineation of these processes aims to catalyze community-driven advancements in LLMs, underscoring a commitment to collaborative and responsible AI development. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model;Codel Llama - Python specialized for Python;and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions. Based on its benchmark testing, Code Llama outperformed state-of-the-art publicly available LLMs (except GPT-4) on code tasks. Llama 2, Llama 2-Chat, and Code Llama are key steps in LLM development but still have a way to go compared to GPT-4. Meta\\'s open access and commitment to improving these models promise transparent and faster LLM progress in the future. Please refer to the LLM and Llama variants below: From LLMs to Multimodal LLMs, like OpenAI\\'s ChatGPT (GPT-3.5), primarily focus on understanding and generating human language. They\\'ve been instrumental in tasks like text generation, translation, and even creative writing. However, their scope is limited to text. Enter multimodal models like GPT-4. These are a new breed of AI models that can understand and generate not just text, but also images, sounds, and potentially other types of data. The term \"multimodal\" refers to their ability to process multiple modes or types of data simultaneously. This is a game-changer. Imagine an AI that can not only read a description of a dress but also visualize it or even design it! Multimodal AI models are moving us towards more holistic AI systems. These systems can potentially understand our world in a more comprehensive manner, bridging the gap between different forms of data and providing richer, more integrated solutions. As we stand on the cusp of this new era, it\\'s exciting to envision the myriad of applications and innovations that Multimodal models will bring to the table. The future of AI looks more integrated and versatile than ever before. From Connections to Vector DB The AI landscape is witnessing a fascinating transition: from Language Model (LLM) connections or integrations, e.g., LangChain and LlamaIndex, to the rise of Vector Databases (Vector DB) such as Weaviate, Milvus, Pinecone, Chroma, and Vespa.ai. But what\\'s driving this shift, and why does it matter? LLM connections, like the LlamaIndex, primarily focus on linking and understanding vast amounts of external data. They\\'ve been pivotal in creating semantic connections, enabling more intuitive search experiences, and enhancing data accessibility. However, as the volume and variety of data grow, the need for more advanced storage and retrieval mechanisms becomes evident. This is where Vector DBs come into play. Unlike traditional databases that store data in rows and columns, Vector DBs store data in high-dimensional space, allowing for more efficient and accurate similarity searches. Tools like Weaviate and Milvus are designed to handle massive datasets, making them ideal for tasks like image recognition, recommendation systems, and more. The rise of Vector DBs represents a broader trend in AI: the quest for more efficient, scalable, and versatile data handling solutions. As we navigate this evolution, it\\'s clear that the combination of LLMs and Vector DBs will redefine how we store, access, and understand data in the AI-driven future. From Agents to OS The AI realm is abuzz with innovations, and one of the most intriguing shifts we\\'re witnessing is the transition from LLM agents to using LLMs as Operating Systems (OS). Let\\'s delve into this evolution and its implications. LLM agents, like AutoGPT, AgentGPT, BabyAGI, and HuggingGPT, have been groundbreaking in automating tasks based on user requests. These agents leverage the power of Language Models (LLMs) to understand and execute commands, making them invaluable in tasks ranging from content generation to data analysis. Their adaptability and intelligence have made them a staple in many AI toolkits. However, the vision for AI doesn\\'t stop there. The concept of LLM as an OS is emerging as the next big thing. Imagine an operating system where the core is a language model, orchestrating everything around it. Such a system would not just execute tasks but would understand context, anticipate needs, and offer solutions in real time. It\\'s like turning the LLM into the brain of the digital ecosystem, making devices and applications more intuitive and responsive than ever. The move towards LLM as OS signifies a paradigm shift in how we perceive and utilize AI. It\\'s not just about automation anymore; it\\'s about creating a seamless, intelligent interface between humans and technology. As we stand on the brink of this transformation, the potential for LLM-driven OS to revolutionize our digital interactions is immense. From Fine-tuning to Plugins The world of LLMs is undergoing a transformative shift, moving from intricate fine-tuning processes to the more dynamic realm of plugins. Let\\'s unpack this evolution. Historically, fine-tuning has been the cornerstone of LLM optimization. There are two primary ways to fine-tune LLMs: feeding data into the LLM in real-time and directly fine-tuning on the LLM. From a technical standpoint, this involves three methods: Transfer Learning: Adapting a pre-trained model to new tasks.Sequential Fine-tuning: Refining models in stages for specific tasks.Task-specific Fine-tuning: Tailoring models for a particular function. Moreover, LLM techniques like In-context learning, Few-shot learning, and Zero-shot learning have further enhanced the model\\'s adaptability, allowing them to understand and generate content with minimal data. However, the future of LLMs is leaning towards plugins. With the introduction of tools like GPT-4 Plugins, the focus is on extending LLMs seamlessly. Instead of running LLMs as a service, they\\'re envisioned as platforms. This means integrating LLMs with various tools, enhancing their capabilities, and offering a more modular and scalable approach to AI applications. The journey from fine-tuning to plugins represents a move from static optimization to dynamic adaptability, ensuring that LLMs remain at the forefront of AI innovation. In a Nutshell The AI domain is witnessing rapid shifts, with LLMs playing a central role. Initially, the move was from LLMs to Multimodal models, expanding from text to include images and sounds. Simultaneously, the trend shifted from LLM connections, which linked external data, to Vector Databases for efficient high-dimensional storage. Another evolution saw LLM agents, which automated tasks, transitioning towards LLMs as Operating Systems. This change aims for more intuitive, context-aware devices and applications. Furthermore, the traditional fine-tuning processes of LLMs are now being replaced by dynamic plugins, turning LLMs into platforms integrated with various tools. Leading this LLM revolution are OpenAI\\'s GPT-4 and Meta\\'s LLaMA2. Their pioneering efforts are setting the stage for an AI future that\\'s more integrated, responsive, and attuned to human interactions. More Readings Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond: https://arxiv.org/abs/2304.13712Sparks of Artificial General Intelligence: Early experiments with GPT-4: https://arxiv.org/abs/2303.12712GPT4All-J: https://huggingface.co/nomic-ai/gpt4all-jIntroducing Code Llama, a state-of-the-art large language model for coding: https://ai.meta.com/blog/code-llama-large-language-model-coding/Llama 2: Open Foundation and Fine-Tuned Chat Models: https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/', mimetype='text/plain', start_char_idx=None, end_char_idx=None, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')"
]
},
"metadata": {},
"execution_count": 9
}
],
"source": [
"documents[0]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "S17g2RYOjmf2"
},
"source": [
"# Transforming\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"id": "STACTMUR1z9N"
},
"outputs": [],
"source": [
"from llama_index.core.node_parser import TokenTextSplitter\n",
"from llama_index.core.schema import BaseNode\n",
"import hashlib\n",
"\n",
"\n",
"def deterministic_id_func(i: int, doc: BaseNode) -> str:\n",
" \"\"\"Deterministic ID function for the text splitter.\n",
" This will be used to generate a unique repeatable identifier for each node.\"\"\"\n",
" unique_identifier = doc.id_ + str(i)\n",
" hasher = hashlib.sha256()\n",
" hasher.update(unique_identifier.encode(\"utf-8\"))\n",
" return hasher.hexdigest()\n",
"\n",
"\n",
"text_splitter = TokenTextSplitter(\n",
" separator=\" \", chunk_size=512, chunk_overlap=128, id_func=deterministic_id_func\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"id": "CtdsIUQ81_hT",
"outputId": "b97984d9-9639-42d8-fb51-de036e38e274",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 81,
"referenced_widgets": [
"6a5b3fec3572436f97ed97b570f15984",
"9d28cdd8504e429d85b9849c4f679085",
"b4bbbd97b95e4e79b1923aabd512e4c7",
"3b66c8f4087b4df5a9eb84b7dc82e440",
"9639bc37437145c1af00c627da831e2e",
"960a9f07924c4722b42332c9a3b233a8",
"9dd071e120884e88b44101bd4b252342",
"911b081e2a144929a67a0ef8e425706e",
"4bddc051ddc744dcb6efdd74e841bf00",
"4ea27a5184b2446aba68157bd1cb0d2d",
"9e87cc59ae8c4fa1b3b710b83a371590",
"847dfcd1770b4352bc839db928f0834a",
"d013604d2eb4432b850f451d86fc5e90",
"8893726a2ae0488fa04b1c12ef38fd01",
"74be1acb609041ecbecb662c1613575c",
"8e728820e82542e1a4aa440e043e23c2",
"b1661862e73d4b898daa82a61128a7fa",
"d282aabfe99642a699d1aab1122a2806",
"39cbcd4e42ae4af782caf71e3529c459",
"4f121d46026d4435ba35448c8da3be50",
"bebe97dd44e94312ad185632f15caddc",
"45d27d06f7da4f80a31a0347d77f075d"
]
}
},
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"Parsing nodes: 0%| | 0/14 [00:00<?, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "6a5b3fec3572436f97ed97b570f15984"
}
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"Generating embeddings: 0%| | 0/108 [00:00<?, ?it/s]"
],
"application/vnd.jupyter.widget-view+json": {
"version_major": 2,
"version_minor": 0,
"model_id": "847dfcd1770b4352bc839db928f0834a"
}
},
"metadata": {}
}
],
"source": [
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
"from llama_index.core.ingestion import IngestionPipeline\n",
"\n",
"pipeline = IngestionPipeline(\n",
" transformations=[\n",
" text_splitter,\n",
" OpenAIEmbedding(model = 'text-embedding-3-small'),\n",
" ],\n",
" vector_store=vector_store,\n",
")\n",
"\n",
"nodes = pipeline.run(documents=documents, show_progress=True)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"collapsed": true,
"id": "n5WRy0g71Hwu",
"outputId": "6b232bec-31c0-4869-8847-bb3b5b5c73d3"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"TextNode(id_='4ab5bd897f01474fc9b0049f95e31edae3ccd9e74d0f0acd3932b50a74d608b6', embedding=[0.004633472301065922, 0.016692597419023514, 0.06155563145875931, -0.016222193837165833, 0.020455822348594666, -0.0224449560046196, 0.00625972356647253, 0.014663142152130604, -0.00014427100541070104, 0.005826280917972326, 0.02755219303071499, -0.045642558485269547, -0.03534744679927826, 0.004250429570674896, -0.035132404416799545, -0.02787475474178791, -0.034218478947877884, -0.04634144529700279, -0.015294826589524746, 0.03763226419687271, 0.013137691654264927, 0.0072442106902599335, -0.034541040658950806, 0.025952821597456932, -0.005110595840960741, -0.026893628761172295, -0.0479004941880703, 0.01755276322364807, -0.01737804152071476, -0.02486417442560196, 0.05268516764044762, -0.025348016992211342, -0.02216271497309208, -0.01169288158416748, -0.024837292730808258, 0.018386049196124077, -0.005261796526610851, -0.010080070234835148, 0.020294541493058205, -0.004458751063793898, -0.032283104956150055, -0.06263083964586258, -0.00211849482730031, 0.00921990443021059, -0.041099805384874344, 0.004146269056946039, 0.003086181590333581, 0.029729487374424934, -0.02038862183690071, 0.03397655859589577, -0.05128739774227142, 0.019703177735209465, 0.012539607472717762, 0.032874468713998795, -0.062415797263383865, -0.004609952215105295, -0.01901773363351822, -0.006585645955055952, 0.002063054358586669, -0.007889335043728352, -0.02249871753156185, 0.001015567104332149, 0.02455505169928074, 0.00831269845366478, -0.034971125423908234, -0.03913755342364311, -0.08752188831567764, -0.003470904193818569, -0.012237205170094967, -0.014622822403907776, -0.0031685021240264177, 0.008709181100130081, -0.04437918961048126, 0.002911460353061557, -0.0314229391515255, 0.0024864173028618097, 0.003712825942784548, 0.062415797263383865, 0.02065742388367653, -0.027202749624848366, 0.006148843094706535, 0.023600805550813675, -0.02514641545712948, -0.027982275933027267, -0.00039900277624838054, 0.005339077208191156, -0.021786391735076904, -0.017162999138236046, -0.060480423271656036, -0.035428088158369064, -0.03905691206455231, -0.06472749263048172, -0.045911360532045364, 0.021826712414622307, 0.06725423038005829, 0.0172570813447237, -0.00020926646539010108, 0.0010978876380249858, 0.01873549073934555, 0.06956592947244644, -0.01752588152885437, 0.01706891879439354, -0.001084447605535388, 0.006982128601521254, 0.06085674464702606, -0.017633402720093727, 0.04163740947842598, -0.028224196285009384, -0.026450105011463165, -0.013372893445193768, -0.09784388542175293, 0.0018933732062578201, -0.050696033984422684, -0.011834003031253815, 0.019985418766736984, -0.04136860743165016, 0.028197316452860832, 0.029299404472112656, 0.0005523038562387228, -0.013171291910111904, -0.029595086351037025, 0.023856166750192642, 0.057577360421419144, -0.043088942766189575, 0.02744467183947563, -0.038895633071660995, -0.0021235349122434855, -0.015079785138368607, 0.021074067801237106, -0.009945669211447239, -0.01886989176273346, 0.03698713704943657, 0.05209380388259888, -0.0404546819627285, -0.037390340119600296, 0.0021386549342423677, -0.042766377329826355, -0.025576498359441757, -0.04260509833693504, -0.016706036403775215, -0.004220189526677132, -0.040965404361486435, -0.03943323716521263, 0.010577353648841381, -0.06865199655294418, -0.020160140469670296, -0.025348016992211342, -0.008789821527898312, -0.08789821714162827, 0.014945384114980698, -0.016585076227784157, -0.0027552193496376276, -0.025684019550681114, 0.02560337819159031, -0.045185595750808716, -0.02124878764152527, -0.0069350884296, 0.035885050892829895, 0.029917648062109947, -0.03846554830670357, -0.007392051629722118, 0.024501292034983635, 0.012237205170094967, 0.006531885825097561, 0.015348587185144424, 0.029917648062109947, -0.008460539393126965, -0.007351731415838003, -0.07074865698814392, -0.05346469208598137, 0.04085788503289223, 0.016235632821917534, -0.054754942655563354, -0.015671148896217346, -0.026033461093902588, -0.05677095800638199, -0.020859025418758392, -0.033627115190029144, -0.046448964625597, -0.02935316413640976, -0.030320851132273674, 0.028492998331785202, -0.057469841092824936, -0.009313984774053097, -0.05569574981927872, -0.032578788697719574, 0.006400844547897577, 0.032283104956150055, -0.008064056746661663, 0.024219049140810966, -0.006693166680634022, 0.04701344668865204, 0.0854789987206459, 0.05381413549184799, 0.036933377385139465, -0.02335888333618641, 0.04784673452377319, -0.00659236591309309, 0.025200175121426582, -0.010133830830454826, 0.020859025418758392, 0.039325714111328125, 0.02232399582862854, -0.059243932366371155, -0.007506292313337326, -0.0005434838240034878, 0.03042837232351303, -0.033331431448459625, -0.054754942655563354, -0.01739148236811161, 0.04747041314840317, -0.013285532593727112, 0.044137269258499146, 0.018520450219511986, -0.0539216548204422, -0.033008869737386703, -0.053437814116477966, -0.0001328259240835905, -0.01600715145468712, 0.06005033850669861, 0.007775094360113144, 0.02304976060986519, 0.01416585873812437, 0.03271318972110748, -0.03099285624921322, 0.0051912362687289715, 0.00749285239726305, -0.011430799961090088, 0.018614530563354492, 0.008111096918582916, 0.03720217943191528, -0.02470289170742035, -0.023600805550813675, -0.030159570276737213, -0.0032508226577192545, -0.0854252353310585, 0.011047757230699062, -0.029621966183185577, 0.023278241977095604, -0.039486996829509735, 0.009569346904754639, -0.008245497941970825, 0.047094088047742844, -0.004472191445529461, -0.01378953643143177, 0.03682585805654526, -0.015375467017292976, -0.05811496451497078, 0.05271204933524132, 0.014569061808288097, 0.014878183603286743, -0.029460685327649117, -0.0006808247417211533, 0.020791824907064438, -0.004774593282490969, 0.0007723853923380375, -0.051314279437065125, 0.01544266752898693, -0.015980271622538567, -0.041126687079668045, -0.007183730136603117, 0.023896487429738045, -0.023627685382962227, 0.012250646017491817, -0.019689736887812614, -0.0014691702090203762, -0.036772098392248154, 0.034057196229696274, 0.000917286379262805, -0.04701344668865204, 0.028277957811951637, -0.008977983146905899, -0.024165289476513863, -0.015227626077830791, -0.026020022109150887, -0.029003722593188286, 0.007936375215649605, 0.007875895127654076, 0.04424478858709335, 0.027081789448857307, -0.02636946365237236, -0.01630283333361149, 0.07870519161224365, 0.02278095856308937, -0.005386117845773697, 0.016450675204396248, -0.0002814019680954516, -0.012035603635013103, -0.01467658206820488, -0.015093225054442883, 0.06128682941198349, -0.007277810946106911, 0.016101231798529625, -0.015603949315845966, 0.007882614620029926, 0.06128682941198349, 0.06505005806684494, 0.031987424939870834, -0.018816132098436356, 0.016961397603154182, 0.0032004222739487886, -0.01092679612338543, -0.02260623872280121, -0.04690592736005783, 0.013332572765648365, 0.040212761610746384, -0.01003975048661232, -0.03610009327530861, 0.01784844510257244, -0.013379613868892193, 0.009925508871674538, 0.0029652207158505917, 0.0004510831495281309, -0.018829571083188057, -0.01416585873812437, -0.024071207270026207, -3.4361488360445946e-05, -0.013735775835812092, 0.02040206268429756, -0.017149560153484344, -0.009266944602131844, -0.0006157243042252958, 0.009710467420518398, 0.007849014364182949, -0.043384622782468796, 0.012553047388792038, -0.021383188664913177, -0.009045182727277279, 0.0020479343365877867, -0.014743782579898834, 0.016222193837165833, -0.0016455715522170067, -0.019232774153351784, 0.02636946365237236, -0.018923651427030563, 0.022095514461398125, -0.027377471327781677, 0.047927375882864, 0.027632832527160645, 0.02159823104739189, -0.06037290021777153, -0.009078782983124256, -0.026638265699148178, 0.03983643651008606, -0.015859311446547508, 0.014972264878451824, -0.0010357272112742066, 0.03040149249136448, 0.03088533505797386, -0.00047838332829996943, 0.017606522887945175, -0.05435173958539963, 0.041126687079668045, -0.01589963026344776, 0.010738635435700417, -0.00034650243469513953, -0.003427224000915885, -0.0009424865711480379, 0.01362825557589531, 0.011713041923940182, -0.01632971316576004, 0.008561340160667896, -0.0029249005019664764, 0.0194612555205822, 0.009629826992750168, -0.008258937858045101, -0.005722119938582182, -0.028734920546412468, 0.013776096515357494, -0.03986331820487976, 0.006377324461936951, -0.019716618582606316, 0.0020428942516446114, 0.0026308982633054256, -0.05263140797615051, 0.0002335216267965734, -0.00022533157607540488, 0.012458967044949532, -0.04376094415783882, 0.06026538088917732, -0.0017774524167180061, 0.005238276440650225, 0.016746357083320618, -0.00263929832726717, -0.025200175121426582, 0.05660967528820038, 0.0157383494079113, -0.027525311335921288, -0.041583649814128876, 0.009287104941904545, 0.013594655320048332, -0.00324242259375751, -0.019541896879673004, 0.013829856179654598, 0.01100743655115366, -0.00019960639474447817, -0.0020076141227036715, -0.004596512299031019, 0.03510552644729614, 0.05109923705458641, 0.004895554389804602, -0.004562912043184042, -0.009959109127521515, -0.026718907058238983, -0.03682585805654526, 0.0042705899104475975, 0.020603664219379425, 0.04859938099980354, 0.015267946757376194, 0.017472121864557266, 0.04838433861732483, -0.03260566666722298, 0.014018017798662186, -0.033008869737386703, 0.01587275043129921, -0.019810698926448822, 0.0039312276057899, 0.009119103662669659, 0.04911010339856148, 0.06628654152154922, 0.009623107500374317, -0.00730469124391675, -0.009441666305065155, -0.03247126564383507, -0.011874322779476643, 0.034702323377132416, 0.016114672645926476, -0.03247126564383507, -0.009159424342215061, -0.0554269477725029, -0.07757622003555298, 0.031826142221689224, 0.04763169214129448, -0.05951273441314697, -0.043814707547426224, -0.01948813535273075, -0.02533457614481449, 0.042470697313547134, -0.02040206268429756, -0.003035781206563115, 0.005759080406278372, 0.013225052505731583, -0.041099805384874344, -0.02350672334432602, -0.03462168201804161, -0.005490278359502554, -0.01990477927029133, -0.007062769494950771, -0.0104899937286973, -0.03655705600976944, -0.015939950942993164, -0.016208752989768982, 0.07703861594200134, 0.016719477251172066, -0.03263254836201668, -0.05005091056227684, 0.05333029106259346, -0.053545333445072174, 0.05897513031959534, -0.01751244254410267, 0.04924450442194939, -0.009932229295372963, -0.030777815729379654, -0.009602947160601616, -0.002775379456579685, -0.013688735663890839, 0.024340009316802025, -0.002259615808725357, 0.028277957811951637, -0.018708610907197, 0.012049044482409954, 0.00048678339226171374, -0.029030602425336838, -0.02709522843360901, -0.012815129943192005, -0.006928368471562862, 0.019730057567358017, -0.036772098392248154, 0.0036221053451299667, 0.00031710221082903445, 0.009999429807066917, -0.008527739904820919, 0.019541896879673004, 0.023452963680028915, -0.02608722262084484, 0.08676924556493759, -0.014542181976139545, 0.01857420988380909, 0.021961113438010216, 0.006249643862247467, -0.03792794421315193, -0.016437234356999397, 0.01571146957576275, -0.015563628636300564, 0.01826508715748787, -0.015482988208532333, -0.011981843970716, -0.06198571249842644, -0.036019451916217804, -0.019555335864424706, -0.005426438059657812, -0.04284701868891716, -0.05437862128019333, 0.015966830775141716, 0.0013902096543461084, -0.00047418332542292774, 0.026584506034851074, -0.007996856234967709, 0.02860051952302456, 0.027001148089766502, -0.02335888333618641, -0.005994281731545925, 0.006239563692361116, 0.011948243714869022, 0.01693451777100563, -0.0025149774737656116, -0.00800357572734356, 0.031261660158634186, -0.004583071917295456, 0.01033543236553669, 0.022350875660777092, 0.00021462149743456393, 0.002256255829706788, -0.006088362541049719, -0.003003861056640744, -0.02157135121524334, -0.024998575448989868, -0.006451244931668043, -0.030777815729379654, -0.009253504686057568, 0.028277957811951637, -0.016706036403775215, -0.020764945074915886, -0.033035751432180405, -0.06849072128534317, -0.020724624395370483, 0.0029568206518888474, -0.03569689020514488, -0.03360023349523544, -0.042309414595365524, 0.014891624450683594, 0.025670578703284264, 0.04222877323627472, 0.033008869737386703, -0.0034473841078579426, 0.007754934020340443, -0.02040206268429756, -0.0013759295688942075, -0.0038505869451910257, 0.042470697313547134, 0.0883820578455925, -0.04405662789940834, 0.017955966293811798, -0.01826508715748787, -0.0027115389239042997, -0.013036890886723995, 0.009535746648907661, 0.00012495087867137045, 0.0013834896963089705, 0.04389534518122673, 0.034836724400520325, -0.0041193887591362, 0.013130972161889076, -0.003230662550777197, -0.011921362951397896, 0.003958107437938452, -0.00037800264544785023, 0.04432542994618416, 0.010207751765847206, -0.003282743040472269, -0.013057051226496696, 0.012768088839948177, 0.0314229391515255, -0.01618187315762043, -0.014582501724362373, -0.01662539690732956, 0.025401776656508446, 0.016719477251172066, 0.013238492421805859, -0.01886989176273346, -0.034541040658950806, -0.00847397930920124, -0.028519880026578903, -0.011350159533321857, -0.027229629456996918, 0.007586933206766844, -0.01600715145468712, 0.03042837232351303, -0.031261660158634186, 0.03881499171257019, 0.03690649941563606, -0.01325865276157856, -0.019420934841036797, -0.030482131987810135, -0.000225751573452726, 0.007640693336725235, 0.020630544051527977, -0.03838490694761276, -0.04282014071941376, -0.010597513988614082, 0.018614530563354492, 0.006158922798931599, -0.02994452975690365, -0.01079239509999752, -0.05410981923341751, 0.013372893445193768, -0.002116814721375704, 0.0028375398833304644, -0.015859311446547508, -0.0075533329509198666, -0.0057389200665056705, 0.007593653164803982, -0.010752075351774693, -0.07655477523803711, -0.027605952695012093, -0.020348303020000458, -0.029272524639964104, -0.025576498359441757, 0.04704032838344574, -0.016289394348859787, -0.0019622535910457373, 0.00652180565521121, -0.01371561549603939, -0.04510495439171791, 0.021463830024003983, 0.0006325244321487844, -0.02470289170742035, -0.016370033845305443, -0.027605952695012093, 0.026705466210842133, -0.00366914551705122, -0.006138762924820185, 0.040669724345207214, 0.013446814380586147, 0.005500358529388905, -0.0024208968970924616, 0.02381584607064724, 0.0036456254310905933, 0.013937377370893955, -0.023614244535565376, 0.02159823104739189, 0.0262081827968359, -0.015617389231920242, -0.052389487624168396, -0.010906635783612728, -0.03389591723680496, -0.0025300977285951376, -0.030052049085497856, 0.001363329472951591, -0.011249358765780926, -0.009119103662669659, -0.04924450442194939, 0.0034322640858590603, 0.009260225109755993, 0.03249814733862877, -0.008883901871740818, 0.02292880043387413, -0.03400343656539917, -0.011410639621317387, 0.019367175176739693, -0.052523888647556305, -0.015106665901839733, -0.029245644807815552, -0.00020286141079850495, -0.027511872351169586, 0.01784844510257244, -0.0012625288218259811, 0.027928514406085014, -0.021100947633385658, 0.0075600529089570045, -0.038895633071660995, -0.0012381686829030514, 0.01904461346566677, -0.011921362951397896, 0.035885050892829895, 0.010463112965226173, -0.0036288253031671047, -0.0479542538523674, 0.0012826889287680387, 0.00928038451820612, -0.011108237318694592, 0.030052049085497856, -0.07531828433275223, 0.004267229698598385, 0.002005934016779065, 0.014058338478207588, 0.023963687941432, 0.008554619736969471, 0.011659281328320503, -0.021033747121691704, -0.019071493297815323, -0.02579154074192047, -0.009172864258289337, -0.01206248439848423, 0.00906534306704998, 0.011639120988547802, -0.03728282079100609, 0.057577360421419144, -0.018318848684430122, -0.035858169198036194, -0.02189391292631626, 0.002651058603078127, -0.013608095236122608, 0.0012398486724123359, -0.008803261443972588, -0.023412643000483513, -0.011034317314624786, 0.03714841976761818, 0.011195598170161247, -0.016746357083320618, -0.037551622837781906, -0.030509013682603836, 0.018036605790257454, 0.015845870599150658, -0.014797543175518513, -0.004539391491562128, 0.004240349400788546, -0.023426083847880363, 0.013010011054575443, -0.027350591495633125, -0.049217622727155685, -0.0036221053451299667, -0.019877899438142776, 0.01467658206820488, -0.00982470903545618, -0.009307265281677246, -0.02261967770755291, 0.012304405681788921, -0.042766377329826355, 0.034971125423908234, 0.027229629456996918, 0.01784844510257244, 0.025831859558820724, -0.03177238255739212, -0.032444387674331665, -0.004808193538337946, -0.024917934089899063, -0.026853308081626892, -0.026745786890387535, -0.0036321852821856737, 0.020899346098303795, 0.008258937858045101, -0.02653074450790882, -0.021786391735076904, 0.015335147269070148, -0.010906635783612728, 0.022888479754328728, 0.01482442393898964, 0.02787475474178791, -0.0030525813344866037, -0.042631976306438446, 0.01175336167216301, 0.0076944539323449135, 0.00831941794604063, -0.01630283333361149, -0.005749000236392021, -0.0045024314895272255, -0.005046755075454712, -0.019891338422894478, 0.006333644036203623, 0.02353360503911972, 0.02935316413640976, 0.022982560098171234, 0.01632971316576004, -0.002948420587927103, -0.02365456521511078, 0.0001748262147884816, 0.010879755951464176, 0.013655135408043861, -0.008601659908890724, -0.015456108376383781, -0.03343895450234413, 0.014125538989901543, 0.0022999360226094723, 0.02455505169928074, -0.025106094777584076, 0.035885050892829895, 0.004821633454412222, 0.019205894321203232, 0.017404921352863312, -0.021544471383094788, -0.013319132849574089, -0.0026493784971535206, -0.019259653985500336, 0.0036221053451299667, -0.01618187315762043, -0.04513183608651161, -0.011135118082165718, -0.002494817366823554, 0.0007631453336216509, -0.02170575223863125, -0.0007686053868383169, -0.009199744090437889, 0.012364886701107025, -0.003991707693785429, 0.05677095800638199, 0.02170575223863125, -0.10956364870071411, -0.020106380805373192, 0.020106380805373192, 0.019998859614133835, 0.01845324970781803, 0.023748645558953285, 0.04924450442194939, 0.049056343734264374, 0.0005359237547963858, -0.03413783758878708, 0.019515017047524452, -0.04894882068037987, 0.022297115996479988, 2.0068264348083176e-05, -0.009025023318827152, -0.062845878303051, -0.026154423132538795, -0.016867317259311676, 0.031073497608304024, -0.018547330051660538, -0.020469263195991516, -0.00034356239484623075, 0.028089797124266624, 0.007371891289949417, -0.01993165910243988, -0.020872466266155243, 0.005292037036269903, 0.02860051952302456, -0.005066915415227413, 0.010590793564915657, -0.02429969049990177, 0.004885474219918251, 0.006363884545862675, 0.04714784771203995, -0.03069717437028885, -0.015052905306220055, -0.010624393820762634, -0.01990477927029133, 0.01665227673947811, -0.0009223264642059803, 0.014703462831676006, -0.04316958039999008, 0.022875038906931877, 0.007754934020340443, -0.008783101104199886, -0.024366891011595726, 0.029111243784427643, 0.009999429807066917, -0.02787475474178791, -0.010563913732767105, -0.024501292034983635, -0.0006195043097250164, 0.012102804146707058, -0.0015615709125995636, -0.0005023234989494085, 0.006357164587825537, -0.018681731075048447, 0.002454497152939439, 0.041852451860904694, 0.011592080816626549, -0.021087506785988808, 0.022391196340322495, -0.03489048406481743, 0.0057389200665056705, -0.030186450108885765, 0.001806012587621808, -0.002266335766762495, 0.022875038906931877, -0.029890768229961395, -0.030670294538140297, -0.0269877091050148, 0.04378782585263252, 0.028815561905503273, 0.029729487374424934, -0.0011180478613823652, -0.011746642179787159, 0.019058052450418472, 0.07289906591176987, -0.014797543175518513, -0.01025479193776846, 0.005271876696497202, -0.03653017431497574, -0.006589006166905165, -0.007351731415838003, 0.0017724123317748308, -0.0027216190937906504, 0.037417221814394, -0.009522306732833385, -0.0021420149132609367, 0.007271090988069773, 0.029729487374424934, -0.017458682879805565, 0.01934029534459114, 0.014313699677586555, -0.02232399582862854, -0.0031752220820635557, -0.019515017047524452, 0.012929370626807213, 0.020885905250906944, -0.018090365454554558, 0.04034716263413429, 0.01663883589208126, -0.06655534356832504, -0.04330398142337799, 0.013386333361268044, 0.00760037312284112, 0.015106665901839733, 0.030159570276737213, 0.025092655792832375, -0.02128910832107067, 0.03567000851035118, -0.005554118659347296, 0.01137703936547041, 0.02157135121524334, -0.0034473841078579426, 0.022686878219246864, 0.05935145542025566, -0.0033633834682404995, 0.018775811418890953, 0.005839720834046602, 0.02128910832107067, -0.007929655723273754, -0.04123420640826225, -0.00018480129074305296, -0.017431801185011864, 0.001388529664836824, 0.009737348183989525, 0.05709351971745491, 0.026275383308529854, -0.027605952695012093, -0.03403031826019287, -0.012936090119183064, -0.023856166750192642, 0.013688735663890839, -0.024649132043123245, -0.012989850714802742, 0.01663883589208126, 0.01677323691546917, -0.030616533011198044, 0.020173581317067146, 0.026933947578072548, 0.004317630082368851, 0.042927660048007965, -0.006632686126977205, 0.009105663746595383, -0.003259222721680999, -0.020428942516446114, -0.0127344885841012, -0.03502488508820534, -0.01575179025530815, 0.04394910857081413, -0.031234778463840485, 0.0026090582832694054, 0.025213615968823433, 0.007076209411025047, -0.0018379328539595008, 0.0024964974727481604, -0.02233743667602539, -0.00340874376706779, 0.005255076568573713, 0.02575122006237507, 0.02310352213680744, 0.013144412077963352, -0.01829196698963642, -0.006303403992205858, -0.02981012873351574, -0.0006480645388364792, 0.006300043780356646, -0.007849014364182949, 0.048169296234846115, -0.02114126831293106, -0.003020661184564233, 0.057577360421419144, 0.0004804833442904055, 0.0314229391515255, 0.022875038906931877, 0.020751504227519035, 0.006740206852555275, 0.017593082040548325, 0.029729487374424934, 0.0061958832666277885, 0.02623506262898445, -0.04131484776735306, 0.05169060081243515, 0.01798284612596035, -0.005271876696497202, 0.025885621085762978, -0.0056112390011549, -0.0033953036181628704, 0.023009439930319786, -0.0012230485444888473, 0.016222193837165833, 0.01780812442302704, 0.034971125423908234, -0.010281671769917011, -0.04687904566526413, 0.04314270243048668, 0.02053646370768547, -0.053437814116477966, -0.029460685327649117, -0.025563059374690056, 0.06644782423973083, -0.012714329175651073, 0.0050568352453410625, -0.024837292730808258, -0.0057389200665056705, -0.03327767178416252, 0.0068006874062120914, -0.028681160882115364, 0.014743782579898834, 0.017015159130096436, 0.006518445443361998, -0.033170152455568314, -0.00860838033258915, -0.036449532955884933, -0.026638265699148178, -0.008977983146905899, 0.04558879882097244, 0.00847397930920124, -0.02533457614481449, -0.02202831394970417, 0.012707608751952648, -0.023762086406350136, 0.012620247900485992, -0.03249814733862877, 0.012674008496105671, -0.0022444957867264748, -0.0035011444706469774, -0.0058867610059678555, 0.008225337602198124, 0.0058867610059678555, 0.005187876056879759, 0.03545496612787247, 0.0076944539323449135, -0.019058052450418472, -0.036960259079933167, -0.010086790658533573, 0.0003393623628653586, 0.0013398093869909644, 0.00520803639665246, 0.03354647383093834, 0.017929084599018097, 0.011961683630943298, -0.014864743687212467, -0.005624679382890463, 0.00831269845366478, 0.030750934034585953, -0.008964542299509048, -0.033492714166641235, -0.02800915576517582, 0.023762086406350136, 0.002585537964478135, 0.010382472537457943, -0.00760037312284112, 0.028197316452860832, -0.029030602425336838, 0.022539038211107254, 0.032417505979537964, 0.0314766988158226, 0.0003292823093943298, -0.03521304577589035, 0.018318848684430122, 0.005980841815471649, -0.0068712481297552586, -0.01175336167216301, -0.009448385797441006, -0.0026409784331917763, 0.013083931058645248, 0.04416414722800255, 0.008917502127587795, 0.005826280917972326, 0.05034659057855606, 0.007029169239103794, 0.044701751321554184, 0.0020328143145889044, -0.004109308589249849, 0.015698028728365898, -0.011968404054641724, 0.012761369347572327, 0.028492998331785202, -0.0187220498919487, -0.00808421615511179, -0.012176725082099438, -0.0019051332492381334, 0.010637834668159485, -0.007331571076065302, -0.025952821597456932, 0.02427280880510807, 0.03569689020514488, -0.01175336167216301, -0.004777953494340181, 0.041099805384874344, 0.014501861296594143, 0.0022965760435909033, -0.004791393410414457, 0.004882114008069038, 0.01885645091533661, -8.599559805588797e-05, 0.013729056343436241, -0.03537432849407196, 0.021490709856152534, 0.024219049140810966, 0.01618187315762043, -0.036637697368860245, 0.0075533329509198666, 0.021006867289543152, 0.003232342656701803, -0.042793259024620056, 0.02365456521511078, -0.00183457275852561, -0.018654849380254745, 0.021678870543837547, 0.01116199791431427, -0.005604519043117762, 0.02755219303071499, -0.020482702180743217, -0.03959451615810394, -0.028573639690876007, 0.018654849380254745, -0.02338576316833496, 0.010879755951464176, 0.002410816727206111, -0.0016010511899366975, 0.014018017798662186, -0.005910281091928482, 0.009858309291303158, 0.02889620140194893, -0.005460038315504789, 0.015375467017292976, 0.008762940764427185, 0.052335724234580994, -0.010873035527765751, -0.00512739596888423, 0.0061790831387043, -0.0374709814786911, -0.013514013960957527, -0.01692107878625393, 0.0021672151051461697, -0.01603403128683567, -0.0299714095890522, 0.02069774456322193, 0.03260566666722298, -0.003119781846180558, -0.0054365177638828754, -0.002488097408786416, -0.010543753392994404, -0.028976842761039734, -0.015214186161756516, 0.025092655792832375, -0.0039177872240543365, 0.06064170226454735, -0.0003021921147592366, -0.015388907864689827, -0.007721333764493465, -0.034057196229696274, 0.055373188108205795, -0.018816132098436356, 0.012371606193482876, -0.023600805550813675, 0.01190120354294777, -0.008292538113892078, -0.009616387076675892, 0.007190450094640255, 0.008460539393126965, 0.016517875716090202, -0.0172167606651783, -0.02954132668673992, -0.003170182229951024, 0.028116676956415176, 0.005083715543150902, 0.005833000876009464, 0.014784103259444237, 0.010019590146839619, -0.013446814380586147, 0.011269519105553627, -0.0075533329509198666, -0.003430583979934454, 0.02306320145726204, 0.01378953643143177, 0.022243354469537735, 0.004361310508102179, -0.0049661146476864815, -0.03462168201804161, 0.019394055008888245, -0.008877182379364967, 0.010523593053221703, 0.0022680158726871014, 0.008064056746661663, -1.1346642168064136e-05, -0.029998289421200752, 0.037229061126708984, -0.0020428942516446114, 0.0031836221460253, -0.016114672645926476, 0.00269809877499938, -0.009206464514136314, -0.010234631597995758, -0.02201487310230732, -0.02157135121524334, -0.009085503406822681, -0.000913926400244236, -0.02830483764410019, 0.013144412077963352, 0.005211396608501673, 0.029272524639964104, -0.013977698050439358, -0.002995460992679, 0.023762086406350136, -0.01102087739855051, 0.0017144519370049238, -0.05193252116441727, 0.03419159725308418, -0.042470697313547134, 0.0146093824878335, -0.035911932587623596, -0.036772098392248154, 0.005167716182768345, -0.017431801185011864, -0.0093744657933712, 0.018910212442278862, 0.012546327896416187, 0.01057063415646553, -0.00681748753413558, 0.006501645315438509, -0.02425936982035637, 0.013359453529119492, -0.012458967044949532, 0.01857420988380909, -0.003108021803200245, 0.06085674464702606, 0.005974121857434511, 0.012270805425941944, -0.008258937858045101, -0.005718759726732969, 0.003978267777711153, 0.011498000472784042, 0.001109647797420621, -0.025804979726672173, -0.009468546137213707, 0.0232244823127985, 0.010301832109689713, 0.007909495383501053, 0.03510552644729614, 0.04827681556344032, 0.003988347947597504, -0.005234916694462299, -0.023614244535565376, 0.0172167606651783, 0.02425936982035637, 0.026920508593320847, 0.004055548459291458, -0.003890907159075141, -0.04362654313445091, 0.020630544051527977, -0.02771347388625145, -0.021396629512310028, -0.03196054324507713, 0.014448100700974464, 0.011498000472784042, -0.002745139179751277, -0.00800357572734356, 0.0034037036821246147, 0.01677323691546917, -0.0020613744854927063, 0.010133830830454826, 0.02202831394970417, 0.0049728346057236195, 0.005080355331301689, -0.017042038962244987, -0.018775811418890953, 0.030750934034585953, 0.0209531057626009, 0.03792794421315193, 0.023305123671889305, -0.031369179487228394, 0.010597513988614082, -0.012633687816560268, -0.026302263140678406, 0.009703747928142548, -0.010920076631009579, -0.04523935541510582, 0.022404637187719345, 0.024514731019735336, -0.017875324934720993, 0.01889677159488201, 0.021221907809376717, 0.008037175983190536, -0.03905691206455231, -0.0006169843254610896, 0.04634144529700279, 0.029138123616576195, 0.03456792235374451, 0.01690763793885708, -0.0011558480327948928, 0.018036605790257454, -0.016410354524850845, 0.010382472537457943, -0.011524880304932594, -0.0028812200762331486, -0.007969975471496582, -0.008232057094573975, 0.0031382618471980095, 0.033788394182920456, 0.00980454869568348, -0.019380616024136543, -0.017619963735342026, -0.038895633071660995, -0.042900778353214264, -0.002375536598265171, -0.004314270336180925, 0.015926511958241463, -0.0187220498919487, -0.020267661660909653, 0.013453533872961998, 0.026866747066378593, -0.0031886622309684753, -0.009414785541594028, 0.031530458480119705, -0.015294826589524746, -0.020912786945700645, 0.002807299606502056, -0.019851017743349075, -0.0013246892485767603, 0.03360023349523544, -0.019420934841036797, -0.04526623710989952, -0.006851087789982557, 0.017593082040548325, -0.009125824086368084, -0.017861884087324142, 0.00996582955121994, -0.010288392193615437, 0.025845300406217575, -0.02323792316019535, -0.007660853676497936, -0.02201487310230732, 0.02846611849963665, -0.009031742811203003, -0.01002630963921547, -0.004774593282490969, 0.004378110636025667, -0.025374896824359894, -0.042013734579086304, -0.004260509740561247, -0.0028459399472922087, 0.018238207325339317, 0.02501201443374157, 0.023775525391101837, 0.03849243000149727, 0.011363599449396133, -0.0036221053451299667, -0.01602059230208397, -0.013729056343436241, -0.009408066049218178, -0.02514641545712948, 0.033035751432180405, 0.0149857047945261, -0.0003116421867161989, -0.011545040644705296, 0.027659712359309196, 0.007654133252799511, -0.016759797930717468, -0.0010273271473124623, 0.015953391790390015, 0.02083214558660984, -0.024944813922047615, -0.007271090988069773, 0.007479412015527487, -0.01257320772856474, -0.024460971355438232, -0.002597298240289092, 0.00014164598542265594, 0.008655420504510403, -0.01145096030086279, -0.0003003021120093763, -0.017445242032408714, 0.020899346098303795, -0.017472121864557266, 0.028788680210709572, 0.02126222848892212, 0.012929370626807213, -0.017324281856417656, 0.011545040644705296, 0.035428088158369064, -0.002256255829706788, 0.01755276322364807, 0.02381584607064724, -0.02424592897295952, -3.5253997339168563e-05, 0.0039312276057899, -0.008460539393126965, 0.031718622893095016, 0.012989850714802742, 0.019998859614133835, -0.026302263140678406, 0.04526623710989952, 0.006256363820284605, -0.014313699677586555, -0.028385479003190994, -0.005923721473664045, 0.04357278347015381, 0.011934803798794746, 0.009938949719071388, -0.04744353145360947, 0.0009366065496578813, -0.031127257272601128, -0.002100014593452215, 0.008090936578810215, -0.005449958145618439, 0.018668290227651596, -0.02233743667602539, -0.015469548292458057, 0.0010634474456310272, -0.020415503531694412, -0.0007035048911347985, 0.0583837665617466, -0.03196054324507713, 0.0027972194366157055, -0.025737779214978218, 0.013063771650195122, -0.0019017732702195644, -0.0024897772818803787, 0.012989850714802742, -0.007022449281066656, -0.023318562656641006, -0.005073635373264551, -0.006881327833980322, 0.006545325741171837, 0.003027381142601371, -0.02591250091791153, 0.011571920476853848, -0.005130755715072155, -0.0307240542024374, -0.017942525446414948, 0.0001239008706761524, -0.024770092219114304, -0.012707608751952648, -0.01932685449719429, 0.010033030062913895, 0.0064411647617816925, -0.014125538989901543, -0.002234415616840124, 0.02022734098136425, -0.01860108971595764, -0.010731915012001991, 0.030240211635828018, -0.008185016922652721, -0.004704033024609089, -0.037524741142988205, 0.030912216752767563, -0.002116814721375704, -0.003143301932141185, 0.018910212442278862, 0.033519595861434937, 0.021100947633385658, 0.028116676956415176, -0.01708235964179039, 0.022283675149083138, -0.013755936175584793, 0.013910497538745403, 0.025253936648368835, 0.004304190166294575, -0.017714044079184532, 0.0025905780494213104, 0.00016275113739538938, -0.004421791061758995, 0.016383474692702293, 0.012687448412179947, 0.003092901548370719, -0.01227752584964037, -0.010819275863468647, 0.021208468824625015, 0.005382757633924484, 0.005930441431701183, 0.022391196340322495, -0.011881043203175068, -0.010167431086301804, -0.001102927722968161, 0.012680728919804096, 0.011336719617247581, 0.014649702236056328, 0.0008513459470123053, 0.014273379929363728, -0.0013935697497799993, -0.0035481848753988743, 0.009038463234901428, -0.025589939206838608, 0.019273094832897186, 0.020764945074915886, -0.023856166750192642, -0.06574893742799759, -0.017297400161623955, -0.014488421380519867, -0.005103875882923603, -0.017136119306087494, 0.026624826714396477, -0.016087792813777924, -0.009206464514136314, -0.02321104146540165, -0.0025401776656508446, 0.006696526892483234, 0.03537432849407196, 0.011417360045015812, -0.00853445939719677, -0.02157135121524334, 0.024044327437877655, 0.012821849435567856, -0.028519880026578903, -0.012257365509867668, -0.012324566021561623, -0.03284759074449539, -0.02365456521511078, 0.012082644738256931, 0.03491736575961113, 0.011840722523629665, 0.030213331803679466, -0.030939096584916115, -0.013372893445193768, 0.02876180037856102, 0.015818990767002106, -0.018708610907197, 0.005308837164193392, 0.02366800606250763, 0.018171006813645363, 0.00014637102140113711, 0.003375143511220813, -0.015348587185144424, -0.022068634629249573, 0.003699385793879628, -0.011780242435634136, 0.02951444685459137, -0.0006732647307217121, -0.00524499686434865, -0.013433373533189297, -0.007392051629722118, 0.013991137966513634, -0.01145767979323864, -0.011249358765780926, 0.02862739935517311], metadata={'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, excluded_embed_metadata_keys=[], excluded_llm_metadata_keys=[], relationships={<NodeRelationship.SOURCE: '1'>: RelatedNodeInfo(node_id='doc_0', node_type=<ObjectType.DOCUMENT: '4'>, metadata={'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai'}, hash='3b095b0e25cdf965d950cdbd7feb8024030e7645998c1a33dc4427affca624ab'), <NodeRelationship.NEXT: '3'>: RelatedNodeInfo(node_id='e470fa0d001e50b3ec3088022462a94ea7c87dd80106411b7d120f90b379e977', node_type=<ObjectType.TEXT: '1'>, metadata={}, hash='71418de3d50e604c2581574f1abf2248e5cc3ab7c74a3182c37cb1152d0cfd21')}, text='LLM Variants and Meta\\'s Open Source Before shedding light on four major trends, I\\'d share the latest Meta\\'s Llama 2 and Code Llama. Meta\\'s Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. Benchmarking revealed Llama 2\\'s superior performance over most extant open-source chat models. Human-centric evaluations, focusing on safety and utility metrics, positioned Llama 2-Chat as a potential contender against proprietary, closed-source counterparts. The development trajectory of Llama 2 emphasized rigorous fine-tuning methodologies. Meta\\'s transparent delineation of these processes aims to catalyze community-driven advancements in LLMs, underscoring a commitment to collaborative and responsible AI development. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model;Codel Llama - Python specialized for Python;and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions. Based on its benchmark testing, Code Llama outperformed state-of-the-art publicly available LLMs (except GPT-4) on code tasks. Llama 2, Llama 2-Chat, and Code Llama are key steps in LLM development but still have a way to go compared to GPT-4. Meta\\'s open access and commitment to improving these models promise transparent and faster LLM progress in the future. Please refer to the LLM and Llama variants below: From LLMs to Multimodal LLMs, like OpenAI\\'s ChatGPT (GPT-3.5), primarily focus on understanding and generating human language. They\\'ve been instrumental in tasks like text generation, translation, and even creative writing. However, their scope is limited to text. Enter multimodal models like GPT-4. These are a new breed of AI models that can understand and generate not just text, but also images, sounds, and potentially other types of data. The term \"multimodal\" refers to their ability to process multiple modes or', mimetype='text/plain', start_char_idx=0, end_char_idx=2117, text_template='{metadata_str}\\n\\n{content}', metadata_template='{key}: {value}', metadata_seperator='\\n')"
]
},
"metadata": {},
"execution_count": 12
}
],
"source": [
"nodes[0]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EV0ll57p46Dc"
},
"source": [
"# Load Indexes\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"id": "HbT3-kRO4Qpt"
},
"outputs": [],
"source": [
"# Create your index\n",
"from llama_index.core import VectorStoreIndex\n",
"\n",
"index = VectorStoreIndex.from_vector_store(vector_store)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "sb61DWU84bHP"
},
"outputs": [],
"source": [
"from llama_index.llms.gemini import Gemini\n",
"\n",
"# Define a query engine that is responsible for retrieving related pieces of text,\n",
"# and using a LLM to formulate the final answer.\n",
"\n",
"llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=0.3, max_tokens=512)\n",
"query_engine = index.as_query_engine(llm=llm, similarity_top_k=5)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"id": "G32W2LMMCmnv"
},
"outputs": [],
"source": [
"res = query_engine.query(\"How many parameters LLaMA 2 model has?\")"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"id": "obc20cU5Cxf2",
"outputId": "c9ca8f2d-91e5-4333-b799-1ef1584eb85e"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'The Llama2 model has 7 billion parameters. \\n'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 16
}
],
"source": [
"res.response"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "oIAO-saJCzYe",
"outputId": "13661c3b-8192-47c6-c4d5-cffd2993de79"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Node ID\t de49ab9024a434ca1cd1efba258fbaa9a3e2d9a1bca3ab4a0349220cc1e2754f\n",
"Title\t Building a Q&A Bot over Private Documents with OpenAI and LangChain\n",
"Text\t Private data to be used The example provided can be used with any dataset. I am using a data set that has Analyst recommendations from various stocks. For the purpose of demonstration, I have gathered publicly available analyst recommendations to showcase its capabilities. You can replace this with your own information to try this. Below is a partial extract of the information commonly found in these documents. If you wish to try it yourself, you can download analyst recommendations for your preferred stocks from online sources or access them through subscription platforms like Barron's. Although the example provided focuses on analyst recommendations, the underlying structure can be utilized to query various other types of documents in any industry as well. I have assembled such data for a few stocks for demonstration purposes. This includes Google, Microsoft, Meta, and Tesla. To facilitate easy access and updating of analysts' recommendations, all the recommendations can be organized into a designated folder. Each stock corresponds to a separate file within this folder. For example, if there are recommendations for 20 stocks, there will be 20 individual files. This organization enables convenient updating of information for each stock as new recommendations arrive, streamlining the process of managing and maintaining the most up-to-date data for each stock. Questions this Q&A bot application can answer The data we have for this application is stock market analyst recommendations for many stocks. Let's say you are looking for insight about Microsoft stock. You can ask any of the following questions as an example: What is the median target price for Microsoft (MSFT)?What is the highest price estimate for Microsoft (MSFT)?What is the lowest price estimate for Microsoft (MSFT)?How much percentage increase is expected in the stock price of Microsoft (MSFT)?How many analysts provided price forecasts for Microsoft (MSFT)?What is the current consensus among investment analysts regarding Microsoft (MSFT)?Has the consensus rating for Microsoft (MSFT) changed recently?When was the consensus rating last updated for Microsoft (MSFT)?Is the current recommendation for Microsoft (MSFT) to buy, sell, or hold the stock?Are there any recent analyst reports available for Microsoft (MSFT)? These questions cover various aspects of the stock analysis, including price forecasts, analyst recommendations, and recent changes in ratings. The\n",
"Score\t 0.14514275574970692\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t ef0097732e6eed361247a1081f21a3688bdcfff0d8ec6db66c2bfd6381359bf0\n",
"Title\t Exploring Large Language Models -Part 3\n",
"Text\t is, does not result in proper output to questions. The answers are not affected by the training data. Take 2: Instruct Fine-tuning with QLoRa Instruction Tuning concept is a higher-level training concept introduced by this paper FineTuned Language Models Are Zero shot Learners (FLAN) We leverage the intuition that NLP tasks can be described via natural language instructions, such as \"Is the sentiment of this movie review positive or negative?\" or \"Translate 'how are you' into Chinese.\" We take a pre-trained language model of 137B parameters and perform instruction tuning ... Since we use QLoRa we are effectively closely following this paper - QLORA: Efficient Finetuning of Quantized LLMs concerning the training data set, the format that the authors used to train their Gauanco model This is the format for the Llama2 model and will be different for others. One of the hardest problems of training is finding or creating a good quality data set to train. In our case, converting the available training data set to the instruction data set. Since our use case is Closed Book QA, we need to convert this to a QA format. Using older NLP methods like NER (Named Entity Recognition) and then using that to create a QA dataset was not effective. This is where the Self-instruct concept could be used However previous to Llama2, the best-performing model was the GPT 3/4 model via ChatGPT or its API and using these models to do the same was expensive. The 7 billion model of Llama2 has sufficient NLU (Natural Language Understanding) to create output based on a particular format. Running this in 4-bit mode via Quantisation makes it feasible compute-wise to run this on a large data set and convert it to a QA dataset. This was the prompt used. The context was a sliding window from the text dataset. Some minimal parsing and finetuning were done on the output of the model, and we could generate a QA dataset of the format below. This was fed to the QLoRA-based fine-tuning (Colab Notebook). We can see that the output from a fine-tuned 4-bit quantized llama2 7 B model is pretty good. Colab Notebook Trying to\n",
"Score\t 0.14320868766475625\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t 7c0ff552ae4caad1b5fa1914f8c5ea0c907705192580cc127e76b245221805c1\n",
"Title\t Foundation Models: Scaling Large Language Models\n",
"Text\t AI, providing a versatile and adaptable approach to solving complex problems across multiple domains. From language and vision to robotics and reasoning, these models are unlocking new possibilities and driving innovation across various industries. As we continue to explore the full potential of foundation models and their role in the evolution towards AGI, it is crucial to foster responsible and ethical AI development, ensuring these models are used to benefit humanity and address the most pressing challenges of our time. With foundation models as a solid basis, we can accelerate AI research and development, unlocking new frontiers and shaping the future of intelligent systems. LLMs Papers GPT-4 Technical Report: https://arxiv.org/abs/2303.08774GPT-3: Language Models are Few-Shot Learners: https://arxiv.org/abs/2005.14165Toolformer: Language Models Can Teach Themselves to Use Tools: https://arxiv.org/abs/2302.04761LLaMA: Open and Efficient Foundation Language Models: https://arxiv.org/abs/2302.13971Google USM: Scaling Automatic Speech Recognition Beyond 100 Languages: https://arxiv.org/abs/2303.01037Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model: https://arxiv.org/abs/2201.11990 Foundation Models Resources Reflections on Foundation Models: https://hai.stanford.edu/news/reflections-foundation-modelsOn the Opportunities and Risks of Foundation Models: https://arxiv.org/abs/2108.07258\n",
"Score\t 0.1430069728266482\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t b5eeda2ed7d31c3d4f55c6dd4d95f8c3bc0c4a14e3ef371f92770f124632dbef\n",
"Title\t Exploring Large Language Models -Part 3\n",
"Text\t a particular format. Running this in 4-bit mode via Quantisation makes it feasible compute-wise to run this on a large data set and convert it to a QA dataset. This was the prompt used. The context was a sliding window from the text dataset. Some minimal parsing and finetuning were done on the output of the model, and we could generate a QA dataset of the format below. This was fed to the QLoRA-based fine-tuning (Colab Notebook). We can see that the output from a fine-tuned 4-bit quantized llama2 7 B model is pretty good. Colab Notebook Trying to reduce hallucination via fine-tuning In the generated dataset, I added a specific tag `Source:8989REF`. The idea was that via attention, this token will be somehow associated with the text that we were training on. And then to use this hash somehow to tweak the prompt to control hallucination. Something like \"[INST] <<SYS>>\\nYou are a helpful Question Answering Assistant. Please only answer from this reference Source:8989REF\" However, that turned out to be a very naive attempt. Also, note that the generated QA missed transforming training data related to Professor Thiersch's method to a proper QA dataset. These and other improvements need to be experimented with, as well as to train with some completely new data that the model has not seen to test more effectively. Update: Training with new data was done by writing an imaginary story with ChatGPT help and then creating an instruction tuning data set (colab notebook). The model was then trained and tested (colab notebook) with this generated instruct dataset. The results confirm that the model learns via Instruct tuning, not only the fed questions but other details and relations of the domain. Problems with hallucinations remain (Bordor, Lila characters who are not in the story). The LLama2 13B 4-bit fine-tuned model has better output than the 7B model. A lot more needs to be explored in Fine-tuning. One observation is that slight changes in prompts give different answers. Since the output is not deterministic (that is, with even the same prompt, it varies over time), it is all the more difficult to fine-tune prompts to\n",
"Score\t 0.14165182982721075\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t 15268fd9c2a45644a0c49ca1b4897b4fabfe3005fccee48af0acc7eea7dd0e9c\n",
"Title\t Building a Q&A Bot over Private Documents with OpenAI and LangChain\n",
"Text\t much percentage increase is expected in the stock price of Microsoft (MSFT)?How many analysts provided price forecasts for Microsoft (MSFT)?What is the current consensus among investment analysts regarding Microsoft (MSFT)?Has the consensus rating for Microsoft (MSFT) changed recently?When was the consensus rating last updated for Microsoft (MSFT)?Is the current recommendation for Microsoft (MSFT) to buy, sell, or hold the stock?Are there any recent analyst reports available for Microsoft (MSFT)? These questions cover various aspects of the stock analysis, including price forecasts, analyst recommendations, and recent changes in ratings. The chat system can provide specific answers based on the information available in the financial documents. Please note that you can not only ask questions about an individual stock but can also ask comparative questions across stocks. For example, which stock has the most price increase? Here the system will compare the price increase across all the stocks and provide an answer. Quick summary of how the web application works This web-based application allows users to input their questions in a text box and receive answers based on insights gathered from multiple documents. For instance, users can inquire, \"What is the highest price estimate for Microsoft?\" and the application will query the relevant documents to provide an accurate response. Moreover, users can also compare stocks by asking questions such as, \"Which stock, Meta or Microsoft, has a higher percentage increase in the stock price?\" The application will analyze the data across the documents, enabling users to make informed investment decisions based on the comparative insights provided. Application Overview The application is built with LangChain and ChatGPT. Though it uses ChatGPT, we can also wire this to other LLMs as well. LangChain is an innovative framework designed to empower you in building sophisticated applications driven by large language models (LLMs). By offering a standardized interface, LangChain facilitates the seamless integration of various components, including LLMs, data sources, and actions. This streamlined approach accelerates the development of robust applications, enhanced by features such as chaining, data awareness, and agentic capabilities. To complement LangChain, the web application is built utilizing Streamlit, a Python library for creating interactive web applications and data dashboards. Streamlit's\n",
"Score\t 0.14137764389568408\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
]
}
],
"source": [
"for src in res.source_nodes:\n",
" print(\"Node ID\\t\", src.node_id)\n",
" print(\"Title\\t\", src.metadata[\"title\"])\n",
" print(\"Text\\t\", src.text)\n",
" print(\"Score\\t\", src.score)\n",
" print(\"-_\" * 20)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "d4xxZHbdN0lK"
},
"source": [
"# Evaluate the retrieval process and quality of answers\n",
"\n",
"We can evaluate our RAG system with a dataset of questions and associated chunks. Given a question, we can see if the RAG system retrieves the correct chunks of text that can answer the question.\n",
"\n",
"You can generate a synthetic dataset with an LLM such as `gemini-1.5-flash` or create an authentic and manually curated dataset.\n",
"\n",
"Note that a **well curated dataset will always be a better option**, especially for a specific domain or use case.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SuYIj1tD1Hwv"
},
"source": [
"In our example, we will generate a synthetic dataset using `gemini-1.5-flash` to make it simple.\n",
"\n",
"This is the default prompt that the `generate_question_context_pairs` function will uses:\n",
"\n",
"```python\n",
"DEFAULT_QA_GENERATE_PROMPT_TMPL = \"\"\"\\\n",
"Context information is below.\n",
"\n",
"---------------------\n",
"{context_str}\n",
"---------------------\n",
"\n",
"Given the context information and no prior knowledge,\n",
"generate only questions based on the below query.\n",
"\n",
"You are a Teacher/Professor. Your task is to setup \\\n",
"{num_questions_per_chunk} questions for an upcoming \\\n",
"quiz/examination. The questions should be diverse in nature \\\n",
"across the document. Restrict the questions to the \\\n",
"context information provided.\"\n",
"\"\"\"\n",
"```\n"
]
},
{
"cell_type": "code",
"source": [
"# Free Tier-Gemini API key\n",
"from llama_index.core.llms.utils import LLM\n",
"from llama_index.core.schema import MetadataMode, TextNode\n",
"from tqdm import tqdm\n",
"import json\n",
"import re\n",
"import uuid\n",
"import warnings\n",
"import time\n",
"from typing import Dict, List, Tuple\n",
"from llama_index.core.evaluation import EmbeddingQAFinetuneDataset\n",
"\n",
"DEFAULT_QA_GENERATE_PROMPT_TMPL = \"\"\"\\\n",
"Context information is below.\n",
"\n",
"---------------------\n",
"{context_str}\n",
"---------------------\n",
"\n",
"Given the context information and not prior knowledge.\n",
"generate only questions based on the below query.\n",
"\n",
"You are a Teacher/ Professor. Your task is to setup \\\n",
"{num_questions_per_chunk} questions for an upcoming \\\n",
"quiz/examination. The questions should be diverse in nature \\\n",
"across the document. Restrict the questions to the \\\n",
"context information provided.\"\n",
"\"\"\"\n",
"\n",
"def generate_question_context_pairs(\n",
" nodes: List[TextNode],\n",
" llm: LLM,\n",
" qa_generate_prompt_tmpl: str = DEFAULT_QA_GENERATE_PROMPT_TMPL,\n",
" num_questions_per_chunk: int = 2,\n",
" request_delay: float = 2.0\n",
") -> EmbeddingQAFinetuneDataset:\n",
" \"\"\"Generate examples given a set of nodes with delays between requests.\"\"\"\n",
" node_dict = {\n",
" node.node_id: node.get_content(metadata_mode=MetadataMode.NONE)\n",
" for node in nodes\n",
" }\n",
"\n",
" queries = {}\n",
" relevant_docs = {}\n",
"\n",
" for node_id, text in tqdm(node_dict.items()):\n",
" query = qa_generate_prompt_tmpl.format(\n",
" context_str=text, num_questions_per_chunk=num_questions_per_chunk\n",
" )\n",
" response = llm.complete(query)\n",
"\n",
" result = str(response).strip().split(\"\\n\")\n",
" questions = [\n",
" re.sub(r\"^\\d+[\\).\\s]\", \"\", question).strip() for question in result\n",
" ]\n",
" questions = [question for question in questions if len(question) > 0][\n",
" :num_questions_per_chunk\n",
" ]\n",
"\n",
" num_questions_generated = len(questions)\n",
" if num_questions_generated < num_questions_per_chunk:\n",
" warnings.warn(\n",
" f\"Fewer questions generated ({num_questions_generated}) \"\n",
" f\"than requested ({num_questions_per_chunk}).\"\n",
" )\n",
"\n",
" for question in questions:\n",
" question_id = str(uuid.uuid4())\n",
" queries[question_id] = question\n",
" relevant_docs[question_id] = [node_id]\n",
"\n",
" time.sleep(request_delay)\n",
"\n",
" return EmbeddingQAFinetuneDataset(\n",
" queries=queries, corpus=node_dict, relevant_docs=relevant_docs\n",
" )\n",
"\n",
"#from llama_index.core.evaluation import generate_question_context_pairs\n",
"from llama_index.llms.gemini import Gemini\n",
"\n",
"llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=1, max_tokens=512)\n",
"\n",
"rag_eval_dataset = generate_question_context_pairs(\n",
" nodes[:25],\n",
" llm=llm,\n",
" num_questions_per_chunk=1,\n",
" request_delay=4\n",
")\n",
"\n",
"# Save the dataset as a json file for later use\n",
"rag_eval_dataset.save_json(\"./rag_eval_dataset.json\")\n"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 34
},
"id": "_kCbMX67TqG-",
"outputId": "84034294-ba9b-4d5a-baeb-b2c250180045"
},
"execution_count": 18,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"100%|██████████| 25/25 [02:41<00:00, 6.46s/it]\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"id": "jhHLA3he1Hww",
"collapsed": true
},
"outputs": [],
"source": [
"# #Paid-Gemini API Key\n",
"\n",
"# from llama_index.core.evaluation import generate_question_context_pairs\n",
"# from llama_index.llms.gemini import Gemini\n",
"\n",
"# llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=1, max_tokens=512)\n",
"# rag_eval_dataset = generate_question_context_pairs(nodes, llm=llm, num_questions_per_chunk=1)\n",
"\n",
"# # We can save the dataset as a json file for later use.\n",
"# rag_eval_dataset.save_json(\"./rag_eval_dataset.json\")"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"id": "mNDd5i921Hww"
},
"outputs": [],
"source": [
"# We can also load the dataset from a previously saved json file.\n",
"from llama_index.core.evaluation import EmbeddingQAFinetuneDataset\n",
"\n",
"rag_eval_dataset = EmbeddingQAFinetuneDataset.from_json(\"./rag_eval_dataset.json\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qOx3vDWA1Hww"
},
"source": [
"### Evaluation for Hit Rate and Mean Reciprocal Rank (MRR)\n",
"\n",
"We will make use of `RetrieverEvaluator` available in Llama-index. We will measure the Hit Rate and Mean Reciprocal Rank (MRR).\n",
"\n",
"**Hit Rate:**\n",
"\n",
"Think of the Hit Rate like playing a game of guessing. You're given a question and you need to guess the correct answer from a list of options. The Hit Rate measures how often you guess the correct answer by only looking at your top few guesses. If you often find the right answer in your first few guesses, you have a high Hit Rate. So, in the context of a retrieval system, it's about how frequently the system finds the correct document within its top 'k' picks (where 'k' is a number you decide, like top 5 or top 10).\n",
"\n",
"**Mean Reciprocal Rank (MRR):**\n",
"\n",
"MRR is a bit like measuring how quickly you can find a treasure in a list of boxes. Imagine you have a row of boxes and only one of them has a treasure. The MRR calculates how close to the start of the row the treasure box is, on average. If the treasure is always in the first box you open, you're doing great and have an MRR of 1. If it's in the second box, the score is 1/2, since you took two tries to find it. If it's in the third box, your score is 1/3, and so on. MRR averages these scores across all your searches. So, for a retrieval system, MRR looks at where the correct document ranks in the system's guesses. If it's usually near the top, the MRR will be high, indicating good performance.\n",
"In summary, Hit Rate tells you how often the system gets it right in its top guesses, and MRR tells you how close to the top the right answer usually is. Both metrics are useful for evaluating the effectiveness of a retrieval system, like how well a search engine or a recommendation system works.\n"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"id": "eARSzx8I1Hww"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"\n",
"def display_results_retriever(name, eval_results):\n",
" \"\"\"Display results from evaluate.\"\"\"\n",
"\n",
" metric_dicts = []\n",
" for eval_result in eval_results:\n",
" metric_dict = eval_result.metric_vals_dict\n",
" metric_dicts.append(metric_dict)\n",
"\n",
" full_df = pd.DataFrame(metric_dicts)\n",
"\n",
" hit_rate = full_df[\"hit_rate\"].mean()\n",
" mrr = full_df[\"mrr\"].mean()\n",
"\n",
" metric_df = pd.DataFrame(\n",
" {\"Retriever Name\": [name], \"Hit Rate\": [hit_rate], \"MRR\": [mrr]}\n",
" )\n",
"\n",
" return metric_df"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"id": "hD5YflG51Hww",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "53a0b810-b589-4735-faab-5f1d0f4ebcf9"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" Retriever Name Hit Rate MRR\n",
"0 Retriever top_4 0.12 0.043333\n",
" Retriever Name Hit Rate MRR\n",
"0 Retriever top_6 0.16 0.05\n",
" Retriever Name Hit Rate MRR\n",
"0 Retriever top_8 0.2 0.055714\n",
" Retriever Name Hit Rate MRR\n",
"0 Retriever top_10 0.24 0.060159\n"
]
}
],
"source": [
"from llama_index.core.evaluation import RetrieverEvaluator\n",
"\n",
"# We can evaluate the retievers with different top_k values.\n",
"for i in [2, 4, 6, 8, 10]:\n",
" retriever = index.as_retriever(similarity_top_k=i)\n",
" retriever_evaluator = RetrieverEvaluator.from_metric_names(\n",
" [\"mrr\", \"hit_rate\"], retriever=retriever\n",
" )\n",
" eval_results = await retriever_evaluator.aevaluate_dataset(\n",
" rag_eval_dataset, workers=32\n",
" )\n",
" print(display_results_retriever(f\"Retriever top_{i}\", eval_results))\n",
"\n",
"time.sleep(60)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9y6uofcJ1Hwx"
},
"source": [
"### Evaluation using Relevance and Faithfulness metrics.\n",
"\n",
"Here, we evaluate the answer generated by the LLM. Is the answer using the correct context? Is the answer faithful to the context? Is the answer relevant to the question?\n",
"\n",
"An LLM will answer these questions, more specifically `gpt-4o`.\n",
"\n",
"**`FaithfulnessEvaluator`**\n",
"Evaluates if the answer is faithful to the retrieved contexts (in other words, whether there's an hallucination).\n",
"\n",
"**`RelevancyEvaluator`**\n",
"Evaluates whether the retrieved context and answer are relevant to the user question.\n",
"\n",
"Now, let's see how the top_k value affects these two metrics.\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"id": "ckjE4fcD1Hwx",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "ef15f35f-5010-441f-e023-caa5e68489ea"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"top_2 faithfulness_score: 0.25\n",
"top_2 relevancy_score: 0.6\n",
"===============\n",
"top_4 faithfulness_score: 0.1\n",
"top_4 relevancy_score: 0.95\n",
"===============\n",
"top_6 faithfulness_score: 0.2\n",
"top_6 relevancy_score: 0.9\n",
"===============\n",
"top_8 faithfulness_score: 0.1\n",
"top_8 relevancy_score: 0.6\n",
"===============\n",
"top_10 faithfulness_score: 0.05\n",
"top_10 relevancy_score: 0.55\n",
"===============\n"
]
}
],
"source": [
"from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator, BatchEvalRunner\n",
"from llama_index.llms.openai import OpenAI\n",
"\n",
"# Create your index\n",
"from llama_index.core import VectorStoreIndex\n",
"index = VectorStoreIndex.from_vector_store(vector_store)\n",
"\n",
"# Define an LLM as a judge\n",
"llm_gpt4o = OpenAI(temperature=0, model=\"gpt-4o\")\n",
"llm_gpt4o_mini = OpenAI(temperature=0, model=\"gpt-4o-mini\")\n",
"\n",
"# Initiate the faithfulnes and relevancy evaluator objects\n",
"faithfulness_evaluator = FaithfulnessEvaluator(llm=llm_gpt4o)\n",
"relevancy_evaluator = RelevancyEvaluator(llm=llm_gpt4o)\n",
"\n",
"# Extract the questions from the dataset\n",
"queries = list(rag_eval_dataset.queries.values())\n",
"# Limit to first 10 question to save time (!!remove this line in production!!)\n",
"batch_eval_queries = queries[:20]\n",
"\n",
"# The batch evaluator runs the evaluation in batches\n",
"runner = BatchEvalRunner(\n",
" {\"faithfulness\": faithfulness_evaluator, \"relevancy\": relevancy_evaluator},\n",
" workers=32,\n",
")\n",
"\n",
"\n",
"# Define a for-loop to try different `similarity_top_k` values\n",
"for i in [2, 4, 6, 8, 10]:\n",
" # Set query engine with different number of returned chunks\n",
" query_engine = index.as_query_engine(similarity_top_k=i, llm = llm_gpt4o_mini)\n",
"\n",
" # Run the evaluation\n",
" eval_results = await runner.aevaluate_queries(query_engine, queries=batch_eval_queries)\n",
"\n",
" # Printing the results\n",
" faithfulness_score = sum(\n",
" result.passing for result in eval_results[\"faithfulness\"]\n",
" ) / len(eval_results[\"faithfulness\"])\n",
" print(f\"top_{i} faithfulness_score: {faithfulness_score}\")\n",
"\n",
" relevancy_score = sum(result.passing for result in eval_results[\"relevancy\"]) / len(\n",
" eval_results[\"relevancy\"]\n",
" )\n",
" print(f\"top_{i} relevancy_score: {relevancy_score}\")\n",
" print(\"=\"*15)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YmlmP2Px4THB"
},
"source": [
"### Correctness\n"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"id": "aUulxzuh1Hwx"
},
"outputs": [],
"source": [
"from llama_index.core.evaluation import CorrectnessEvaluator\n",
"\n",
"query = (\n",
" \"Can you explain the theory of relativity proposed by Albert Einstein in\" \" detail?\"\n",
")\n",
"\n",
"reference = \"\"\"\n",
"Certainly! Albert Einstein's theory of relativity consists of two main components: special relativity and general relativity. Special relativity, published in 1905, introduced the concept that the laws of physics are the same for all non-accelerating observers and that the speed of light in a vacuum is a constant, regardless of the motion of the source or observer. It also gave rise to the famous equation E=mc², which relates energy (E) and mass (m).\n",
"\n",
"General relativity, published in 1915, extended these ideas to include the effects of gravity. According to general relativity, gravity is not a force between masses, as described by Newton's theory of gravity, but rather the result of the warping of space and time by mass and energy. Massive objects, such as planets and stars, cause a curvature in spacetime, and smaller objects follow curved paths in response to this curvature. This concept is often illustrated using the analogy of a heavy ball placed on a rubber sheet, causing it to create a depression that other objects (representing smaller masses) naturally move towards.\n",
"\n",
"In essence, general relativity provided a new understanding of gravity, explaining phenomena like the bending of light by gravity (gravitational lensing) and the precession of the orbit of Mercury. It has been confirmed through numerous experiments and observations and has become a fundamental theory in modern physics.\n",
"\"\"\"\n",
"\n",
"response = \"\"\"\n",
"Certainly! Albert Einstein's theory of relativity consists of two main components: special relativity and general relativity. Special relativity, published in 1905, introduced the concept that the laws of physics are the same for all non-accelerating observers and that the speed of light in a vacuum is a constant, regardless of the motion of the source or observer. It also gave rise to the famous equation E=mc², which relates energy (E) and mass (m).\n",
"\n",
"However, general relativity, published in 1915, extended these ideas to include the effects of magnetism. According to general relativity, gravity is not a force between masses but rather the result of the warping of space and time by magnetic fields generated by massive objects. Massive objects, such as planets and stars, create magnetic fields that cause a curvature in spacetime, and smaller objects follow curved paths in response to this magnetic curvature. This concept is often illustrated using the analogy of a heavy ball placed on a rubber sheet with magnets underneath, causing it to create a depression that other objects (representing smaller masses) naturally move towards due to magnetic attraction.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"id": "CYIjkAP74bly"
},
"outputs": [],
"source": [
"evaluator = CorrectnessEvaluator(llm=llm_gpt4o)\n",
"\n",
"result = evaluator.evaluate(query=query,response=response,reference=reference,)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"id": "-3b-bgvA4dAz",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "84fdccf9-6fd0-402e-b10a-3158a9eb7613"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"2.0"
]
},
"metadata": {},
"execution_count": 26
}
],
"source": [
"result.score"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"id": "KNEhRQAo4dT0",
"colab": {
"base_uri": "https://localhost:8080/",
"height": 70
},
"outputId": "c39199f3-ecba-434e-b1f6-2907168dc2c8"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"'The generated answer is mostly relevant but contains significant inaccuracies. It incorrectly states that general relativity involves the effects of magnetism and magnetic fields, which is not true. General relativity deals with the warping of space and time by mass and energy, not magnetic fields. This fundamental error reduces the correctness of the answer.'"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 27
}
],
"source": [
"result.feedback"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"id": "ZOlwVWZb49H4"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"provenance": [],
"include_colab_link": true
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"6a5b3fec3572436f97ed97b570f15984": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_9d28cdd8504e429d85b9849c4f679085",
"IPY_MODEL_b4bbbd97b95e4e79b1923aabd512e4c7",
"IPY_MODEL_3b66c8f4087b4df5a9eb84b7dc82e440"
],
"layout": "IPY_MODEL_9639bc37437145c1af00c627da831e2e"
}
},
"9d28cdd8504e429d85b9849c4f679085": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_960a9f07924c4722b42332c9a3b233a8",
"placeholder": "",
"style": "IPY_MODEL_9dd071e120884e88b44101bd4b252342",
"value": "Parsing nodes: 100%"
}
},
"b4bbbd97b95e4e79b1923aabd512e4c7": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_911b081e2a144929a67a0ef8e425706e",
"max": 14,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4bddc051ddc744dcb6efdd74e841bf00",
"value": 14
}
},
"3b66c8f4087b4df5a9eb84b7dc82e440": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_4ea27a5184b2446aba68157bd1cb0d2d",
"placeholder": "",
"style": "IPY_MODEL_9e87cc59ae8c4fa1b3b710b83a371590",
"value": " 14/14 [00:01<00:00, 9.81it/s]"
}
},
"9639bc37437145c1af00c627da831e2e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"960a9f07924c4722b42332c9a3b233a8": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9dd071e120884e88b44101bd4b252342": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"911b081e2a144929a67a0ef8e425706e": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4bddc051ddc744dcb6efdd74e841bf00": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"4ea27a5184b2446aba68157bd1cb0d2d": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"9e87cc59ae8c4fa1b3b710b83a371590": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"847dfcd1770b4352bc839db928f0834a": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_d013604d2eb4432b850f451d86fc5e90",
"IPY_MODEL_8893726a2ae0488fa04b1c12ef38fd01",
"IPY_MODEL_74be1acb609041ecbecb662c1613575c"
],
"layout": "IPY_MODEL_8e728820e82542e1a4aa440e043e23c2"
}
},
"d013604d2eb4432b850f451d86fc5e90": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b1661862e73d4b898daa82a61128a7fa",
"placeholder": "",
"style": "IPY_MODEL_d282aabfe99642a699d1aab1122a2806",
"value": "Generating embeddings: 100%"
}
},
"8893726a2ae0488fa04b1c12ef38fd01": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_39cbcd4e42ae4af782caf71e3529c459",
"max": 108,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_4f121d46026d4435ba35448c8da3be50",
"value": 108
}
},
"74be1acb609041ecbecb662c1613575c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_bebe97dd44e94312ad185632f15caddc",
"placeholder": "",
"style": "IPY_MODEL_45d27d06f7da4f80a31a0347d77f075d",
"value": " 108/108 [00:02<00:00, 39.87it/s]"
}
},
"8e728820e82542e1a4aa440e043e23c2": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b1661862e73d4b898daa82a61128a7fa": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"d282aabfe99642a699d1aab1122a2806": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"39cbcd4e42ae4af782caf71e3529c459": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4f121d46026d4435ba35448c8da3be50": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"bebe97dd44e94312ad185632f15caddc": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"45d27d06f7da4f80a31a0347d77f075d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
} |