File size: 109,777 Bytes
95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 0bfedbd 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 0bfedbd 95cae2f 0bfedbd 009d017 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 009d017 0bfedbd 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 009d017 95cae2f 0bfedbd 95cae2f 009d017 95cae2f 009d017 95cae2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/12-Improve_Query.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-zE1h0uQV7uT"
},
"source": [
"# Install Packages and Setup Variables\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QPJzr-I9XQ7l",
"outputId": "5d48c88b-a0a9-49ff-d788-e076d1cb4ead"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.1.2\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n",
"\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\n"
]
}
],
"source": [
"!pip install -q llama-index==0.10.57 openai==1.37.0 cohere==5.6.2 tiktoken==0.7.0 chromadb==0.5.5 html2text sentence_transformers pydantic llama-index-vector-stores-chroma==0.1.10 kaleido==0.2.1 llama-index-llms-gemini==0.1.11"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "riuXwpSPcvWC"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Set the following API Keys in the Python environment. Will be used later.\n",
"os.environ[\"OPENAI_API_KEY\"] = \"<YOUR_OPENAI_API_KEY>\"\n",
"os.environ[\"GOOGLE_API_KEY\"] = \"<YOUR_GOOGLE_API_KEY>\""
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"id": "jIEeZzqLbz0J"
},
"outputs": [],
"source": [
"# Allows running asyncio in environments with an existing event loop, like Jupyter notebooks.\n",
"import nest_asyncio\n",
"\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Bkgi2OrYzF7q"
},
"source": [
"# Load a Model\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "9oGT6crooSSj"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/fabio/Desktop/ai-tutor-rag-system/venv_ai_tutor/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n",
"WARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n",
"I0000 00:00:1723471002.830383 5318658 config.cc:230] gRPC experiments enabled: call_status_override_on_cancellation, event_engine_dns, event_engine_listener, http2_stats_fix, monitoring_experiment, pick_first_new, trace_record_callops, work_serializer_clears_time_cache\n",
"I0000 00:00:1723471002.837404 5318658 check_gcp_environment_no_op.cc:29] ALTS: Platforms other than Linux and Windows are not supported\n"
]
}
],
"source": [
"from llama_index.llms.gemini import Gemini\n",
"\n",
"llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=1, max_tokens=512)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0BwVuJXlzHVL"
},
"source": [
"# Create a VectoreStore\n"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "SQP87lHczHKc"
},
"outputs": [],
"source": [
"import chromadb\n",
"from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction\n",
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"\n",
"# create client and a new collection\n",
"# chromadb.EphemeralClient saves data in-memory.\n",
"chroma_client = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
"chroma_collection = chroma_client.get_or_create_collection(\n",
" \"mini-llama-articles\",\n",
" embedding_function=OpenAIEmbeddingFunction(api_key=os.environ[\"OPENAI_API_KEY\"], model_name=\"text-embedding-3-small\")\n",
")\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "I9JbAzFcjkpn"
},
"source": [
"# Load the Dataset (CSV)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ceveDuYdWCYk"
},
"source": [
"## Download\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eZwf6pv7WFmD"
},
"source": [
"The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model. Read the dataset as a long string.\n"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "wl_pbPvMlv1h",
"outputId": "a453b612-20a8-4396-d22b-b19d2bc47816"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I0000 00:00:1723471003.927906 5318658 work_stealing_thread_pool.cc:320] WorkStealingThreadPoolImpl::PrepareFork\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
" Dload Upload Total Spent Left Speed\n",
"100 169k 100 169k 0 0 506k 0 --:--:-- --:--:-- --:--:-- 506k\n"
]
}
],
"source": [
"!curl -o ./mini-llama-articles.csv https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VWBLtDbUWJfA"
},
"source": [
"## Read File\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0Q9sxuW0g3Gd",
"outputId": "49b27d8a-1f96-4e8d-fa0f-27afbf2c395c"
},
"outputs": [
{
"data": {
"text/plain": [
"14"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import csv\n",
"\n",
"rows = []\n",
"\n",
"# Load the file as a JSON\n",
"with open(\"./mini-llama-articles.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n",
" csv_reader = csv.reader(file)\n",
"\n",
" for idx, row in enumerate(csv_reader):\n",
" if idx == 0:\n",
" continue\n",
" # Skip header row\n",
" rows.append(row)\n",
"\n",
"# The number of characters in the dataset.\n",
"len(rows)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "S17g2RYOjmf2"
},
"source": [
"# Convert to Document obj\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"id": "YizvmXPejkJE"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Doc ID: 8908a7bc-6918-4725-9859-6e6a7788f865\n",
"Text: LLM Variants and Meta's Open Source Before shedding light on\n",
"four major trends, I'd share the latest Meta's Llama 2 and Code Llama.\n",
"Meta's Llama 2 represents a sophisticated evolution in LLMs. This\n",
"suite spans models pretrained and fine-tuned across a parameter\n",
"spectrum of 7 billion to 70 billion. A specialized derivative, Llama\n",
"2-Chat, has been...\n"
]
}
],
"source": [
"from llama_index.core import Document\n",
"\n",
"# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
"documents = [\n",
" Document(\n",
" text=row[1], metadata={\"title\": row[0], \"url\": row[2], \"source_name\": row[3]}\n",
" )\n",
" for row in rows\n",
"]\n",
"print(documents[0])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qjuLbmFuWsyl"
},
"source": [
"# Transforming\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"id": "9z3t70DGWsjO"
},
"outputs": [],
"source": [
"from llama_index.core.text_splitter import TokenTextSplitter\n",
"\n",
"text_splitter = TokenTextSplitter(separator=\" \", chunk_size=512, chunk_overlap=128)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 331,
"referenced_widgets": [
"3fbabd8a8660461ba5e7bc08ef39139a",
"df2365556ae242a2ab1a119f9a31a561",
"5f4b9d32df8f446e858e4c289dc282f9",
"5b588f83a15d42d9aca888e06bbd95ff",
"ad073bca655540809e39f26538d2ec0d",
"13b9c5395bca4c3ba21265240cb936cf",
"47a4586384274577a726c57605e7f8d9",
"96a3bdece738481db57e811ccb74a974",
"5c7973afd79349ed997a69120d0629b2",
"af9b6ae927dd4764b9692507791bc67e",
"134210510d49476e959dd7d032bbdbdc",
"5f9bb065c2b74d2e8ded32e1306a7807",
"73a06bc546a64f7f99a9e4a135319dcd",
"ce48deaf4d8c49cdae92bfdbb3a78df0",
"4a172e8c6aa44e41a42fc1d9cf714fd0",
"0245f2604e4d49c8bd0210302746c47b",
"e956dfab55084a9cbe33c8e331b511e7",
"cb394578badd43a89850873ad2526542",
"193aef33d9184055bb9223f56d456de6",
"abfc9aa911ce4a5ea81c7c451f08295f",
"e7937a1bc68441a080374911a6563376",
"e532ed7bfef34f67b5fcacd9534eb789"
]
},
"id": "P9LDJ7o-Wsc-",
"outputId": "01070c1f-dffa-4ab7-ad71-b07b76b12e03"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I0000 00:00:1723471005.241134 5318658 work_stealing_thread_pool.cc:320] WorkStealingThreadPoolImpl::PrepareFork\n",
"Parsing nodes: 100%|ββββββββββ| 14/14 [00:00<00:00, 51.60it/s]\n",
" 0%| | 0/108 [00:00<?, ?it/s]I0000 00:00:1723471005.538637 5318658 check_gcp_environment_no_op.cc:29] ALTS: Platforms other than Linux and Windows are not supported\n",
"100%|ββββββββββ| 108/108 [04:51<00:00, 2.70s/it] \n",
"100%|ββββββββββ| 108/108 [05:05<00:00, 2.83s/it] \n",
"100%|ββββββββββ| 108/108 [03:39<00:00, 2.04s/it] \n",
"Generating embeddings: 0%| | 0/108 [00:00<?, ?it/s]I0000 00:00:1723471822.110812 5318658 work_stealing_thread_pool.cc:320] WorkStealingThreadPoolImpl::PrepareFork\n",
"Generating embeddings: 100%|ββββββββββ| 108/108 [00:03<00:00, 31.65it/s]\n"
]
}
],
"source": [
"from llama_index.core.extractors import (\n",
" SummaryExtractor,\n",
" QuestionsAnsweredExtractor,\n",
" KeywordExtractor,\n",
")\n",
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
"from llama_index.core.ingestion import IngestionPipeline\n",
"\n",
"pipeline = IngestionPipeline(\n",
" transformations=[\n",
" text_splitter,\n",
" QuestionsAnsweredExtractor(questions=3, llm=llm),\n",
" SummaryExtractor(summaries=[\"prev\", \"self\"], llm=llm),\n",
" KeywordExtractor(keywords=10, llm=llm),\n",
" OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
" ],\n",
" vector_store=vector_store,\n",
")\n",
"\n",
"nodes = pipeline.run(documents=documents, show_progress=True)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "mPGa85hM2P3P",
"outputId": "c106c463-2459-4b11-bbae-5bd5e2246011"
},
"outputs": [
{
"data": {
"text/plain": [
"108"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(nodes)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"id": "23x20bL3_jRb"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I0000 00:00:1723471826.032425 5318658 work_stealing_thread_pool.cc:320] WorkStealingThreadPoolImpl::PrepareFork\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"updating: mini-llama-articles/ (stored 0%)\n",
"updating: mini-llama-articles/chroma.sqlite3 (deflated 66%)\n",
"updating: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/ (stored 0%)\n",
"updating: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/data_level0.bin (deflated 100%)\n",
"updating: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/length.bin (deflated 99%)\n",
"updating: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/link_lists.bin (stored 0%)\n",
"updating: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/header.bin (deflated 61%)\n"
]
}
],
"source": [
"!zip -r vectorstore.zip mini-llama-articles"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OWaT6rL7ksp8"
},
"source": [
"# Load Indexes\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SodY2Xpf_kxg",
"outputId": "9f8b7153-ea58-4824-8363-c47e922612a8"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I0000 00:00:1723471826.688310 5318658 work_stealing_thread_pool.cc:320] WorkStealingThreadPoolImpl::PrepareFork\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Archive: vectorstore.zip\n",
" inflating: mini-llama-articles/chroma.sqlite3 \n",
" inflating: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/data_level0.bin \n",
" inflating: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/length.bin \n",
" extracting: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/link_lists.bin \n",
" inflating: mini-llama-articles/6fc7339a-e4bb-4707-8db9-a8a5d4e2b37c/header.bin \n"
]
}
],
"source": [
"!unzip -o vectorstore.zip"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"id": "mXi56KTXk2sp"
},
"outputs": [],
"source": [
"import chromadb\n",
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"\n",
"# Create your index\n",
"db = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
"chroma_collection = db.get_or_create_collection(\"mini-llama-articles\")\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"id": "jKXURvLtkuTS"
},
"outputs": [],
"source": [
"# Create your index\n",
"from llama_index.core import VectorStoreIndex\n",
"\n",
"vector_index = VectorStoreIndex.from_vector_store(vector_store)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
"\n",
"llama_query_engine = vector_index.as_query_engine(\n",
" llm=llm,\n",
" similarity_top_k=3,\n",
" embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Llama is a family of large language models developed by Meta. \n",
"\n"
]
}
],
"source": [
"res = llama_query_engine.query(\"What is the LLama model?\")\n",
"print(res.response)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Llama is a family of large language models developed by Meta. \\n'"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res.response"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Node ID\t 18dcfeee-ebbc-476f-a4d9-042b26c38aa2\n",
"Title\t Beyond GPT-4: What's New?\n",
"Text\t LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. Meta's Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. Benchmarking revealed Llama 2's superior performance over most extant open-source chat models. Human-centric evaluations, focusing on safety and utility metrics, positioned Llama 2-Chat as a potential contender against proprietary, closed-source counterparts. The development trajectory of Llama 2 emphasized rigorous fine-tuning methodologies. Meta's transparent delineation of these processes aims to catalyze community-driven advancements in LLMs, underscoring a commitment to collaborative and responsible AI development. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model;Codel Llama - Python specialized for Python;and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions. Based on its benchmark testing, Code Llama outperformed state-of-the-art publicly available LLMs (except GPT-4) on code tasks. Llama 2, Llama 2-Chat, and Code Llama are key steps in LLM development but still have a way to go compared to GPT-4. Meta's open access and commitment to improving these models promise transparent and faster LLM progress in the future. Please refer to the LLM and Llama variants below: From LLMs to Multimodal LLMs, like OpenAI's ChatGPT (GPT-3.5), primarily focus on understanding and generating human language. They've been instrumental in tasks like text generation, translation, and even creative writing. However, their scope is limited to text. Enter multimodal models like GPT-4. These are a new breed of AI models that can understand and generate not just text, but also images, sounds, and potentially other types of data. The term \"multimodal\" refers to their ability to process multiple modes or\n",
"Score\t 0.3794056870856778\n",
"Metadata\t {'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"Here are three questions this context can answer specifically, unlikely to be found elsewhere:\\n\\n1. **What are the key differences in training methodologies and fine-tuning processes used for Llama 2 compared to previous versions, and how do these advancements contribute to its improved performance?** This question dives deeper into the specific technical details of Llama 2's development, which are highlighted in the text but not readily available elsewhere.\\n2. **What are the specific safety and utility metrics used to evaluate Llama 2-Chat against proprietary chat models, and how do these metrics differ from those used for evaluating other LLMs?** This question focuses on the unique aspects of evaluating chat models, a specific niche within LLM development, and delves into the methods used for comparing Llama 2-Chat against commercial counterparts.\\n3. **How does Code Llama's specialization in Python differ from its foundational model, and how does this specialization impact its performance on code tasks compared to other LLMs?** This question probes the specific advantages and limitations of Code Llama's Python specialization, offering insight into the practical implications of fine-tuning for specific programming languages.\", 'section_summary': \"Summary: \\n\\nThis section focuses on the advancements in large language models (LLMs) beyond GPT-4, particularly highlighting Meta's open-source contributions: Llama 2 and Code Llama. \\n\\n**Key Topics:**\\n\\n* **Llama 2:** A suite of LLMs spanning 7 billion to 70 billion parameters, trained and fine-tuned for improved performance. \\n * **Llama 2-Chat:** A specialized variant optimized for dialogue-centric applications. \\n* **Code Llama:** A code-focused LLM built upon Llama 2, available in three versions:\\n * **Code Llama (foundational)**\\n * **Code Llama - Python (specialized for Python)**\\n * **Code Llama - Instruct (fine-tuned for natural language instructions)**\\n* **Open-source AI:** Meta's commitment to open-sourcing these models fosters community-driven innovation and faster LLM development.\\n* **Multimodal LLMs:** The introduction of models like GPT-4 that can handle multiple data types (text, images, sound) expands the capabilities of LLMs.\\n\\n**Key Entities:**\\n\\n* **Meta:** The company behind Llama 2 and Code Llama.\\n* **GPT-4:** OpenAI's proprietary, state-of-the-art multimodal LLM.\\n* **Llama 2, Llama 2-Chat, Code Llama:** The specific LLM variants discussed in the excerpt.\", 'excerpt_keywords': 'Keywords: LLMs, Llama 2, Code Llama, GPT-4, Meta, Open Source, Fine-tuning, Multimodal, Dialogue, Python'}\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t 72d99052-2337-4e2a-8b03-a39e1d01a6ef\n",
"Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
"Text\t The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model's practical applicability and user experience. Thus, achieving an optimum balance that allows the model to be both helpful and safe is of utmost importance. To strike the right balance between helpfulness and safety, Meta employed two reward models - one for helpfulness and another for safety - to optimize the model's responses. The 34B parameter model has reported higher safety violations than other variants, possibly contributing to the delay in its release. IV. Helpfulness Comparison: Llama 2 Outperforms Competitors Llama 2 emerges as a strong contender in the open-source language model arena, outperforming its competitors in most categories. The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding. Despite being smaller, Llam a2's performance rivals that of Chat GPT 3.5, a significantly larger closed-source model. While GPT 4 and PalM-2-L, with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2's impressive ability to compete with larger models highlights its efficiency and potential in the market. However, Llama 2 does face challenges in coding and math problems, where models like Chat GPT 4 excel, given their significantly larger size. Chat GPT 4 performed significantly better than Llama 2 for coding (HumanEval benchmark)and math problem tasks (GSM8k benchmark). Open-source AI technologies, like Llama 2, continue to advance, offering\n",
"Score\t 0.372375859380259\n",
"Metadata\t {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"Here are 3 questions this context can answer specifically, drawing on the provided information:\\n\\n1. **How did Meta balance the trade-off between helpfulness and safety in Llama 2, and what specific methods did they use?** This question delves into the core of Llama 2's development, exploring the technical strategies employed to optimize for both helpfulness and safety, which is a key challenge in large language model design.\\n2. **How does the 34B parameter model of Llama 2 compare in terms of safety violations to other variants, and what potential reasons are given for its delayed release?** The text hints at differences in safety performance between the various Llama 2 models. This question seeks clarification on the specific performance discrepancies and potential explanations for the 34B model's delayed release.\\n3. **What are the specific benchmarks and categories where Llama 2 outperforms other open-source language models, like Falcon and MPT?** The context mentions Llama 2's impressive performance compared to competitors. This question focuses on the specific benchmarks used to assess these capabilities and the categories where Llama 2 demonstrates its superior performance.\", 'prev_section_summary': \"## Summary: \\n\\nThis section focuses on Meta's release of Llama 2, a powerful open-source language model with significant implications for commercial use. \\n\\n**Key Topics:**\\n\\n* **Open-Source and Commercial Use:** Llama 2 is the first open-source language model designed for commercial applications, allowing businesses to integrate it into their products and services. This opens doors for AI-powered applications.\\n* **Model Variations:** Llama 2 comes in four sizes (7B, 13B, 34B, and 70B parameters), with varying performance based on their training data and resources. \\n* **Training and Resources:** The 70B model was trained on a massive dataset of 2 trillion tokens, consuming vast GPU hours. Its chat version was further refined with human annotations. \\n* **Safety and Alignment:** Meta prioritized safety and alignment in Llama 2's development, resulting in better performance on safety benchmarks compared to ChatGPT. However, achieving the right balance between helpfulness and safety is a continuous challenge in large language model development. \\n\\n**Key Entities:**\\n\\n* **Llama 2:** The focus of the article, a new open-source language model from Meta.\\n* **Meta:** The company behind Llama 2.\\n* **ChatGPT:** A leading chatbot and language model used for comparison with Llama 2.\\n* **Azure and AWS:** Cloud platforms where Llama 2 is available.\", 'section_summary': \"Summary: \\n\\nThis section focuses on Meta's Llama 2, an open-source language model. The key topics are:\\n\\n**Safety and Helpfulness:** \\n* The article discusses the challenge of balancing helpfulness and safety in large language models. \\n* Meta used two reward models (one for helpfulness, one for safety) to optimize Llama 2.\\n* The 34B parameter model has higher safety violations than other variants, which may be a reason for its delayed release.\\n\\n**Performance Comparison:**\\n* Llama 2 outperforms its competitors (Falcon and MPT) in most categories.\\n* The 70B parameter model surpasses all other open-source models, while the 7B and 34B models beat Falcon and MPT in most categories.\\n* Llama 2 performs well even compared to larger, closed-source models like ChatGPT 3.5, though it struggles with coding and math problems compared to GPT-4 and PaLM-2-L.\\n\\n**Key Entities:**\\n* **Llama 2**: The open-source language model developed by Meta.\\n* **ChatGPT**: A closed-source language model from OpenAI.\\n* **Falcon and MPT**: Other open-source language models. \\n* **GPT-4 and PaLM-2-L**: Larger, closed-source language models.\\n* **HumanEval and GSM8k**: Benchmarks used to evaluate coding and math problem-solving abilities.\", 'excerpt_keywords': 'Keywords: Llama 2, open-source, language model, Meta, ChatGPT, safety, helpfulness, Falcon, MPT, benchmark'}\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t 910478c2-4c5e-477f-b7ed-553c47f29c31\n",
"Title\t Fine-Tuning a Llama-2 7B Model for Python Code Generation\n",
"Text\t only fine-tuning a small number of additional parameters, with virtually all model parameters remaining frozen. PEFT has been found to produce good generalization with relatively low-volume datasets. Furthermore, it enhances the reusability and portability of the model, as the small checkpoints obtained can be easily added to the base model, and the base model can be easily fine-tuned and reused in multiple scenarios by adding the PEFT parameters. Finally, since the base model is not adjusted, all the knowledge acquired in the pre-training phase is preserved, thus avoiding catastrophic forgetting. Most widely used PEFT techniques aim to keep the pre-trained base model untouched and add new layers or parameters on top of it. These layers are called \"Adapters\" and the technique of their adjustment \"adapter-tuning\", we add these layers to the pre-trained base model and only train the parameters of these new layers. However, a serious problem with this approach is that these layers lead to increased latency in the inference phase, which makes the process inefficient in many scenarios.In the LoRa technique, a Low-Rank Adaptation of Large Language Models, the idea is not to include new layers but to add values to the parameters in a way that avoids this scary problem of latency in the inference phase. LoRa trains and stores the changes of the additional weights while freezing all the weights of the pre-trained model. Therefore, we train a new weights matrix with the changes in the pre-trained model matrix, and this new matrix is decomposed into 2 Low-rank matrices as explained here: Merge the base model and the adapter weights As we mention, we have trained \"modification weights\" on the base model, our final model requires merging the pretrained model and the adapters in a single model. You can find and download the model in my Hugging Face account edumunozsala/llama-27b-int4-python-code-20k. Give it a try! Inferencing or generating Python code And finally, we will show you how you can download the model from the Hugging Face Hub and call the model to generate an accurate result: Thanks to Maxime Labonne for an excellent article [9] and Philipp Schmid who provides an inspiring\n",
"Score\t 0.37138571268973897\n",
"Metadata\t {'title': 'Fine-Tuning a Llama-2 7B Model for Python Code Generation', 'url': 'https://pub.towardsai.net/fine-tuning-a-llama-2-7b-model-for-python-code-generation-865453afdf73#bf4e', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': 'Here are 3 questions that the provided context can answer specifically, which are unlikely to be found elsewhere:\\n\\n1. **How does LoRa address the latency issue associated with adapter-tuning methods in fine-tuning large language models?** \\n * The context explains that LoRa avoids adding new layers, instead focusing on adding weights to existing parameters, thus preserving the base model and avoiding inference latency. \\n2. **What is the specific Hugging Face model name and location for the fine-tuned Llama-2 7B model for Python code generation discussed in the article?** \\n * The context explicitly mentions the model is available on Hugging Face under the name \"edumunozsala/llama-27b-int4-python-code-20k\".\\n3. **What are the advantages of using PEFT (Parameter-Efficient Fine-Tuning) techniques, particularly in the context of this fine-tuned Llama-2 model for Python code generation?**\\n * The context highlights the benefits of PEFT including good generalization with small datasets, model reusability and portability, and preservation of pre-training knowledge, all of which are relevant to the specific application of Python code generation.', 'prev_section_summary': 'Summary:\\n\\nThis section focuses on the fine-tuning of a Llama-2 7B model for Python code generation. It highlights two key techniques:\\n\\n**1. Environment and Tools:**\\n* The fine-tuning process utilizes Google Colab environment and a Python script for interactive and unattended training respectively.\\n* The training process requires significant computational resources, utilizing a T4 instance for initial runs and an A100 instance for full dataset and epoch training.\\n* The trained model is uploaded to the Huggingface hub for sharing with other users.\\n\\n**2. Fine-tuning Techniques:**\\n* The section emphasizes Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly Lora and QLora, as efficient methods for training large language models.\\n* PEFT methods significantly reduce RAM and storage requirements by only fine-tuning a small subset of model parameters, allowing for training on a single GPU.\\n* This approach offers advantages like improved generalization, reusability, portability, and prevention of catastrophic forgetting, while preserving the knowledge acquired during the pre-training phase.', 'section_summary': 'Summary: \\n\\nThis section discusses the fine-tuning of a Llama-2 7B model for Python code generation, highlighting the use of Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly the LoRa method. \\n\\n* **PEFT Techniques:** The article emphasizes the benefits of PEFT, including good generalization with small datasets, model reusability and portability, and preservation of pre-training knowledge. \\n* **LoRa:** The section explains how LoRa addresses the latency issue associated with adapter-tuning methods by adding weights to existing parameters, rather than adding new layers. This approach avoids inference latency while still enabling fine-tuning.\\n* **Hugging Face Model:** The fine-tuned Llama-2 7B model for Python code generation is available on Hugging Face under the name \"edumunozsala/llama-27b-int4-python-code-20k\".\\n* **Inference:** The article concludes by providing instructions on how to download the model from Hugging Face and use it to generate Python code.', 'excerpt_keywords': 'Keywords: Fine-tuning, Llama-2, Python Code Generation, Parameter-Efficient Fine-Tuning (PEFT), LoRa, Hugging Face, Inference, Latency, Model Reusability, Catastrophic Forgetting.'}\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
]
}
],
"source": [
"for src in res.source_nodes:\n",
" print(\"Node ID\\t\", src.node_id)\n",
" print(\"Title\\t\", src.metadata[\"title\"])\n",
" print(\"Text\\t\", src.text)\n",
" print(\"Score\\t\", src.score)\n",
" print(\"Metadata\\t\", src.metadata)\n",
" print(\"-_\" * 20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Router\n",
"\n",
"Routers are modules that take in a user query and a set of βchoicesβ (defined by metadata), and returns one or more selected choices.\n",
"\n",
"They can be used for the following use cases and more:\n",
"\n",
"- Selecting the right data source among a diverse range of data sources\n",
"\n",
"- Deciding whether to do summarization (e.g. using summary index query engine) or semantic search (e.g. using vector index query engine)\n",
"\n",
"- Deciding whether to βtryβ out a bunch of choices at once and combine the results (using multi-routing capabilities).\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Lets create a different query engine with Mistral AI information\n"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"from pathlib import Path\n",
"import requests\n",
"\n",
"wiki_titles = [\n",
" \"Mistral AI\",\n",
"]\n",
"\n",
"data_path = Path(\"data_wiki\")\n",
"\n",
"for title in wiki_titles:\n",
" response = requests.get(\n",
" \"https://en.wikipedia.org/w/api.php\",\n",
" params={\n",
" \"action\": \"query\",\n",
" \"format\": \"json\",\n",
" \"titles\": title,\n",
" \"prop\": \"extracts\",\n",
" \"explaintext\": True,\n",
" },\n",
" ).json()\n",
" page = next(iter(response[\"query\"][\"pages\"].values()))\n",
" wiki_text = page[\"extract\"]\n",
"\n",
" if not data_path.exists():\n",
" Path.mkdir(data_path)\n",
"\n",
" with open(data_path / f\"mistral_ai.txt\", \"w\") as fp:\n",
" fp.write(wiki_text)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|ββββββββββ| 5/5 [00:14<00:00, 2.86s/it]\n",
"100%|ββββββββββ| 5/5 [00:14<00:00, 2.92s/it]\n",
"100%|ββββββββββ| 5/5 [00:09<00:00, 1.95s/it]\n"
]
}
],
"source": [
"from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
"\n",
"# Assuming you have prepared a directory for Mistral data\n",
"documents = SimpleDirectoryReader(\"data_wiki\").load_data()\n",
"\n",
"transformations = [\n",
" text_splitter,\n",
" QuestionsAnsweredExtractor(questions=3, llm=llm),\n",
" SummaryExtractor(summaries=[\"prev\", \"self\"], llm=llm),\n",
" KeywordExtractor(keywords=10, llm=llm),\n",
" OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
"]\n",
"\n",
"mistral_index = VectorStoreIndex.from_documents(\n",
" documents=documents, llm=llm, transformations=transformations\n",
")\n",
"\n",
"mistral_query = mistral_index.as_query_engine(\n",
" llm=llm,\n",
" similarity_top_k=2,\n",
" embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#from llama_index.core import VectorStoreIndex, SimpleDirectoryReader\n",
"\n",
"#documents = SimpleDirectoryReader(\"data_wiki\").load_data()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#from llama_index.core.text_splitter import TokenTextSplitter\n",
"\n",
"#text_splitter = TokenTextSplitter(separator=\" \", chunk_size=512, chunk_overlap=128)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#from llama_index.core.extractors import (\n",
"# SummaryExtractor,\n",
"# QuestionsAnsweredExtractor,\n",
"# KeywordExtractor,\n",
"#)\n",
"#from llama_index.embeddings.openai import OpenAIEmbedding\n",
"#from llama_index.core.ingestion import IngestionPipeline\n",
"#\n",
"#transformations = [\n",
"# text_splitter,\n",
"# QuestionsAnsweredExtractor(questions=3, llm=llm),\n",
"# SummaryExtractor(summaries=[\"prev\", \"self\"], llm=llm),\n",
"# KeywordExtractor(keywords=10, llm=llm),\n",
"# OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
"#]\n",
"#\n",
"#mistral_index = VectorStoreIndex.from_documents(\n",
"# documents=documents, llm=llm, transformations=transformations\n",
"#)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#mistral_query = mistral_index.as_query_engine(\n",
"# llm=llm,\n",
"# similarity_top_k=2,\n",
"# embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
"#)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.core.query_engine import RouterQueryEngine\n",
"from llama_index.core.selectors import PydanticSingleSelector, LLMSingleSelector\n",
"from llama_index.core.tools import QueryEngineTool\n",
"from llama_index.core import VectorStoreIndex, SummaryIndex\n",
"\n",
"# initialize tools\n",
"llama_tool = QueryEngineTool.from_defaults(\n",
" query_engine=llama_query_engine,\n",
" description=\"Useful for questions about the LLama LLM created by Meta\",\n",
")\n",
"mistral_tool = QueryEngineTool.from_defaults(\n",
" query_engine=mistral_query,\n",
" description=\"Useful for questions about the Mistral LLM created by Mistral AI\",\n",
")\n",
"\n",
"# initialize router query engine (single selection, pydantic)\n",
"query_engine = RouterQueryEngine(\n",
" selector=PydanticSingleSelector.from_defaults(),\n",
" query_engine_tools=[\n",
" llama_tool,\n",
" mistral_tool,\n",
" ],\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Llama 2 is a suite of large language models, spanning 7 billion to 70 billion parameters, trained and fine-tuned for improved performance. \\n'"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = query_engine.query(\n",
" \"What is the LLama model?\",\n",
")\n",
"print(res.response)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Node ID\t 18dcfeee-ebbc-476f-a4d9-042b26c38aa2\n",
"Title\t Beyond GPT-4: What's New?\n",
"Text\t LLM Variants and Meta's Open Source Before shedding light on four major trends, I'd share the latest Meta's Llama 2 and Code Llama. Meta's Llama 2 represents a sophisticated evolution in LLMs. This suite spans models pretrained and fine-tuned across a parameter spectrum of 7 billion to 70 billion. A specialized derivative, Llama 2-Chat, has been engineered explicitly for dialogue-centric applications. Benchmarking revealed Llama 2's superior performance over most extant open-source chat models. Human-centric evaluations, focusing on safety and utility metrics, positioned Llama 2-Chat as a potential contender against proprietary, closed-source counterparts. The development trajectory of Llama 2 emphasized rigorous fine-tuning methodologies. Meta's transparent delineation of these processes aims to catalyze community-driven advancements in LLMs, underscoring a commitment to collaborative and responsible AI development. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model;Codel Llama - Python specialized for Python;and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions. Based on its benchmark testing, Code Llama outperformed state-of-the-art publicly available LLMs (except GPT-4) on code tasks. Llama 2, Llama 2-Chat, and Code Llama are key steps in LLM development but still have a way to go compared to GPT-4. Meta's open access and commitment to improving these models promise transparent and faster LLM progress in the future. Please refer to the LLM and Llama variants below: From LLMs to Multimodal LLMs, like OpenAI's ChatGPT (GPT-3.5), primarily focus on understanding and generating human language. They've been instrumental in tasks like text generation, translation, and even creative writing. However, their scope is limited to text. Enter multimodal models like GPT-4. These are a new breed of AI models that can understand and generate not just text, but also images, sounds, and potentially other types of data. The term \"multimodal\" refers to their ability to process multiple modes or\n",
"Score\t 0.37941382833585724\n",
"Metadata\t {'title': \"Beyond GPT-4: What's New?\", 'url': 'https://pub.towardsai.net/beyond-gpt-4-whats-new-cbd61a448eb9#dda8', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"Here are three questions this context can answer specifically, unlikely to be found elsewhere:\\n\\n1. **What are the key differences in training methodologies and fine-tuning processes used for Llama 2 compared to previous versions, and how do these advancements contribute to its improved performance?** This question dives deeper into the specific technical details of Llama 2's development, which are highlighted in the text but not readily available elsewhere.\\n2. **What are the specific safety and utility metrics used to evaluate Llama 2-Chat against proprietary chat models, and how do these metrics differ from those used for evaluating other LLMs?** This question focuses on the unique aspects of evaluating chat models, a specific niche within LLM development, and delves into the methods used for comparing Llama 2-Chat against commercial counterparts.\\n3. **How does Code Llama's specialization in Python differ from its foundational model, and how does this specialization impact its performance on code tasks compared to other LLMs?** This question probes the specific advantages and limitations of Code Llama's Python specialization, offering insight into the practical implications of fine-tuning for specific programming languages.\", 'section_summary': \"Summary: \\n\\nThis section focuses on the advancements in large language models (LLMs) beyond GPT-4, particularly highlighting Meta's open-source contributions: Llama 2 and Code Llama. \\n\\n**Key Topics:**\\n\\n* **Llama 2:** A suite of LLMs spanning 7 billion to 70 billion parameters, trained and fine-tuned for improved performance. \\n * **Llama 2-Chat:** A specialized variant optimized for dialogue-centric applications. \\n* **Code Llama:** A code-focused LLM built upon Llama 2, available in three versions:\\n * **Code Llama (foundational)**\\n * **Code Llama - Python (specialized for Python)**\\n * **Code Llama - Instruct (fine-tuned for natural language instructions)**\\n* **Open-source AI:** Meta's commitment to open-sourcing these models fosters community-driven innovation and faster LLM development.\\n* **Multimodal LLMs:** The introduction of models like GPT-4 that can handle multiple data types (text, images, sound) expands the capabilities of LLMs.\\n\\n**Key Entities:**\\n\\n* **Meta:** The company behind Llama 2 and Code Llama.\\n* **GPT-4:** OpenAI's proprietary, state-of-the-art multimodal LLM.\\n* **Llama 2, Llama 2-Chat, Code Llama:** The specific LLM variants discussed in the excerpt.\", 'excerpt_keywords': 'Keywords: LLMs, Llama 2, Code Llama, GPT-4, Meta, Open Source, Fine-tuning, Multimodal, Dialogue, Python'}\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t 72d99052-2337-4e2a-8b03-a39e1d01a6ef\n",
"Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
"Text\t The model demonstrates exceptionally low AI safety violation percentages, surpassing even ChatGPT in safety benchmarks. Finding the right balance between helpfulness and safety when optimizing a model poses significant challenges. While a highly helpful model may be capable of answering any question, including sensitive ones like \"How do I build a bomb?\", it also raises concerns about potential misuse. Thus, striking the perfect equilibrium between providing useful information and ensuring safety is paramount. However, prioritizing safety to an extreme extent can lead to a model that struggles to effectively address a diverse range of questions. This limitation could hinder the model's practical applicability and user experience. Thus, achieving an optimum balance that allows the model to be both helpful and safe is of utmost importance. To strike the right balance between helpfulness and safety, Meta employed two reward models - one for helpfulness and another for safety - to optimize the model's responses. The 34B parameter model has reported higher safety violations than other variants, possibly contributing to the delay in its release. IV. Helpfulness Comparison: Llama 2 Outperforms Competitors Llama 2 emerges as a strong contender in the open-source language model arena, outperforming its competitors in most categories. The 70B parameter model outperforms all other open-source models, while the 7B and 34B models outshine Falcon in all categories and MPT in all categories except coding. Despite being smaller, Llam a2's performance rivals that of Chat GPT 3.5, a significantly larger closed-source model. While GPT 4 and PalM-2-L, with their larger size, outperform Llama 2, this is expected due to their capacity for handling complex language tasks. Llama 2's impressive ability to compete with larger models highlights its efficiency and potential in the market. However, Llama 2 does face challenges in coding and math problems, where models like Chat GPT 4 excel, given their significantly larger size. Chat GPT 4 performed significantly better than Llama 2 for coding (HumanEval benchmark)and math problem tasks (GSM8k benchmark). Open-source AI technologies, like Llama 2, continue to advance, offering\n",
"Score\t 0.37239497005046795\n",
"Metadata\t {'title': \"Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\", 'url': 'https://pub.towardsai.net/metas-llama-2-revolutionizing-open-source-language-models-for-commercial-use-1492bec112b#148f', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': \"Here are 3 questions this context can answer specifically, drawing on the provided information:\\n\\n1. **How did Meta balance the trade-off between helpfulness and safety in Llama 2, and what specific methods did they use?** This question delves into the core of Llama 2's development, exploring the technical strategies employed to optimize for both helpfulness and safety, which is a key challenge in large language model design.\\n2. **How does the 34B parameter model of Llama 2 compare in terms of safety violations to other variants, and what potential reasons are given for its delayed release?** The text hints at differences in safety performance between the various Llama 2 models. This question seeks clarification on the specific performance discrepancies and potential explanations for the 34B model's delayed release.\\n3. **What are the specific benchmarks and categories where Llama 2 outperforms other open-source language models, like Falcon and MPT?** The context mentions Llama 2's impressive performance compared to competitors. This question focuses on the specific benchmarks used to assess these capabilities and the categories where Llama 2 demonstrates its superior performance.\", 'prev_section_summary': \"## Summary: \\n\\nThis section focuses on Meta's release of Llama 2, a powerful open-source language model with significant implications for commercial use. \\n\\n**Key Topics:**\\n\\n* **Open-Source and Commercial Use:** Llama 2 is the first open-source language model designed for commercial applications, allowing businesses to integrate it into their products and services. This opens doors for AI-powered applications.\\n* **Model Variations:** Llama 2 comes in four sizes (7B, 13B, 34B, and 70B parameters), with varying performance based on their training data and resources. \\n* **Training and Resources:** The 70B model was trained on a massive dataset of 2 trillion tokens, consuming vast GPU hours. Its chat version was further refined with human annotations. \\n* **Safety and Alignment:** Meta prioritized safety and alignment in Llama 2's development, resulting in better performance on safety benchmarks compared to ChatGPT. However, achieving the right balance between helpfulness and safety is a continuous challenge in large language model development. \\n\\n**Key Entities:**\\n\\n* **Llama 2:** The focus of the article, a new open-source language model from Meta.\\n* **Meta:** The company behind Llama 2.\\n* **ChatGPT:** A leading chatbot and language model used for comparison with Llama 2.\\n* **Azure and AWS:** Cloud platforms where Llama 2 is available.\", 'section_summary': \"Summary: \\n\\nThis section focuses on Meta's Llama 2, an open-source language model. The key topics are:\\n\\n**Safety and Helpfulness:** \\n* The article discusses the challenge of balancing helpfulness and safety in large language models. \\n* Meta used two reward models (one for helpfulness, one for safety) to optimize Llama 2.\\n* The 34B parameter model has higher safety violations than other variants, which may be a reason for its delayed release.\\n\\n**Performance Comparison:**\\n* Llama 2 outperforms its competitors (Falcon and MPT) in most categories.\\n* The 70B parameter model surpasses all other open-source models, while the 7B and 34B models beat Falcon and MPT in most categories.\\n* Llama 2 performs well even compared to larger, closed-source models like ChatGPT 3.5, though it struggles with coding and math problems compared to GPT-4 and PaLM-2-L.\\n\\n**Key Entities:**\\n* **Llama 2**: The open-source language model developed by Meta.\\n* **ChatGPT**: A closed-source language model from OpenAI.\\n* **Falcon and MPT**: Other open-source language models. \\n* **GPT-4 and PaLM-2-L**: Larger, closed-source language models.\\n* **HumanEval and GSM8k**: Benchmarks used to evaluate coding and math problem-solving abilities.\", 'excerpt_keywords': 'Keywords: Llama 2, open-source, language model, Meta, ChatGPT, safety, helpfulness, Falcon, MPT, benchmark'}\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t 910478c2-4c5e-477f-b7ed-553c47f29c31\n",
"Title\t Fine-Tuning a Llama-2 7B Model for Python Code Generation\n",
"Text\t only fine-tuning a small number of additional parameters, with virtually all model parameters remaining frozen. PEFT has been found to produce good generalization with relatively low-volume datasets. Furthermore, it enhances the reusability and portability of the model, as the small checkpoints obtained can be easily added to the base model, and the base model can be easily fine-tuned and reused in multiple scenarios by adding the PEFT parameters. Finally, since the base model is not adjusted, all the knowledge acquired in the pre-training phase is preserved, thus avoiding catastrophic forgetting. Most widely used PEFT techniques aim to keep the pre-trained base model untouched and add new layers or parameters on top of it. These layers are called \"Adapters\" and the technique of their adjustment \"adapter-tuning\", we add these layers to the pre-trained base model and only train the parameters of these new layers. However, a serious problem with this approach is that these layers lead to increased latency in the inference phase, which makes the process inefficient in many scenarios.In the LoRa technique, a Low-Rank Adaptation of Large Language Models, the idea is not to include new layers but to add values to the parameters in a way that avoids this scary problem of latency in the inference phase. LoRa trains and stores the changes of the additional weights while freezing all the weights of the pre-trained model. Therefore, we train a new weights matrix with the changes in the pre-trained model matrix, and this new matrix is decomposed into 2 Low-rank matrices as explained here: Merge the base model and the adapter weights As we mention, we have trained \"modification weights\" on the base model, our final model requires merging the pretrained model and the adapters in a single model. You can find and download the model in my Hugging Face account edumunozsala/llama-27b-int4-python-code-20k. Give it a try! Inferencing or generating Python code And finally, we will show you how you can download the model from the Hugging Face Hub and call the model to generate an accurate result: Thanks to Maxime Labonne for an excellent article [9] and Philipp Schmid who provides an inspiring\n",
"Score\t 0.37140718553455054\n",
"Metadata\t {'title': 'Fine-Tuning a Llama-2 7B Model for Python Code Generation', 'url': 'https://pub.towardsai.net/fine-tuning-a-llama-2-7b-model-for-python-code-generation-865453afdf73#bf4e', 'source_name': 'towards_ai', 'questions_this_excerpt_can_answer': 'Here are 3 questions that the provided context can answer specifically, which are unlikely to be found elsewhere:\\n\\n1. **How does LoRa address the latency issue associated with adapter-tuning methods in fine-tuning large language models?** \\n * The context explains that LoRa avoids adding new layers, instead focusing on adding weights to existing parameters, thus preserving the base model and avoiding inference latency. \\n2. **What is the specific Hugging Face model name and location for the fine-tuned Llama-2 7B model for Python code generation discussed in the article?** \\n * The context explicitly mentions the model is available on Hugging Face under the name \"edumunozsala/llama-27b-int4-python-code-20k\".\\n3. **What are the advantages of using PEFT (Parameter-Efficient Fine-Tuning) techniques, particularly in the context of this fine-tuned Llama-2 model for Python code generation?**\\n * The context highlights the benefits of PEFT including good generalization with small datasets, model reusability and portability, and preservation of pre-training knowledge, all of which are relevant to the specific application of Python code generation.', 'prev_section_summary': 'Summary:\\n\\nThis section focuses on the fine-tuning of a Llama-2 7B model for Python code generation. It highlights two key techniques:\\n\\n**1. Environment and Tools:**\\n* The fine-tuning process utilizes Google Colab environment and a Python script for interactive and unattended training respectively.\\n* The training process requires significant computational resources, utilizing a T4 instance for initial runs and an A100 instance for full dataset and epoch training.\\n* The trained model is uploaded to the Huggingface hub for sharing with other users.\\n\\n**2. Fine-tuning Techniques:**\\n* The section emphasizes Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly Lora and QLora, as efficient methods for training large language models.\\n* PEFT methods significantly reduce RAM and storage requirements by only fine-tuning a small subset of model parameters, allowing for training on a single GPU.\\n* This approach offers advantages like improved generalization, reusability, portability, and prevention of catastrophic forgetting, while preserving the knowledge acquired during the pre-training phase.', 'section_summary': 'Summary: \\n\\nThis section discusses the fine-tuning of a Llama-2 7B model for Python code generation, highlighting the use of Parameter-Efficient Fine-Tuning (PEFT) techniques, particularly the LoRa method. \\n\\n* **PEFT Techniques:** The article emphasizes the benefits of PEFT, including good generalization with small datasets, model reusability and portability, and preservation of pre-training knowledge. \\n* **LoRa:** The section explains how LoRa addresses the latency issue associated with adapter-tuning methods by adding weights to existing parameters, rather than adding new layers. This approach avoids inference latency while still enabling fine-tuning.\\n* **Hugging Face Model:** The fine-tuned Llama-2 7B model for Python code generation is available on Hugging Face under the name \"edumunozsala/llama-27b-int4-python-code-20k\".\\n* **Inference:** The article concludes by providing instructions on how to download the model from Hugging Face and use it to generate Python code.', 'excerpt_keywords': 'Keywords: Fine-tuning, Llama-2, Python Code Generation, Parameter-Efficient Fine-Tuning (PEFT), LoRa, Hugging Face, Inference, Latency, Model Reusability, Catastrophic Forgetting.'}\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
]
}
],
"source": [
"for src in res.source_nodes:\n",
" print(\"Node ID\\t\", src.node_id)\n",
" print(\"Title\\t\", src.metadata[\"title\"])\n",
" print(\"Text\\t\", src.text)\n",
" print(\"Score\\t\", src.score)\n",
" print(\"Metadata\\t\", src.metadata)\n",
" print(\"-_\" * 20)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Mistral is a French startup that specializes in developing language models. They have released a variety of models, some open-source and some accessible only through an API. Their models are known for their efficiency and strong performance, particularly in multilingual capabilities and instruction following. \\n'"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"res = query_engine.query(\"What is the Mistral model?\")\n",
"print(res.response)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Node ID\t a5dcf99d-0e3f-4c9a-b003-9766cdbad1c1\n",
"Text\t fundraising of β¬105 million ($117 million) with investors including the American fund Lightspeed Venture Partners, Eric Schmidt, Xavier Niel and JCDecaux. The valuation is then estimated by the Financial Times at β¬240 million ($267 million).\n",
"On 27 September 2023, the company made its language processing model βMistral 7Bβ available under the free Apache 2.0 license. This model has 7 billion parameters, a small size compared to its competitors.\n",
"On 10 December 2023, Mistral AI announced that it had raised β¬385 million ($428 million) as part of its second fundraising. This round of financing notably involves the Californian fund Andreessen Horowitz, BNP Paribas and the software publisher Salesforce.\n",
"On 11 December 2023, the company released the Mixtral 8x7B model with 46.7 billion parameters but using only 12.9 billion per token thanks to the mixture of experts architecture. The model masters 5 languages (French, Spanish, Italian, English and German) and outperforms, according to its developers' tests, the \"LLama 2 70B\" model from Meta. A version trained to follow instructions and called βMixtral 8x7B Instructβ is also offered.\n",
"On 26 February 2024, Microsoft announced a new partnership with the company to expand its presence in the rapidly evolving artificial intelligence industry. Under the agreement, Mistral's rich language models will be available on Microsoft's Azure cloud, while the multilingual conversational assistant \"Le Chat\" will be launched in the style of ChatGPT.\n",
"On 10 April 2024, the company released the mixture of expert models, Mixtral 8x22B, offering high performance on various benchmarks compared to other open models.\n",
"On 16 April 2024, reporting revealed that Mistral was in talks to raise β¬500 million, a deal that would more than double its current valuation to at least β¬5 billion.\n",
"\n",
"\n",
"== Models ==\n",
"\n",
"\n",
"=== Open Weight Models ===\n",
"\n",
"\n",
"==== Mistral 7B ====\n",
"Mistral 7B is a 7.3B parameter language model using the transformers architecture. Officially released on September 27, 2023, via a BitTorrent magnet link, and Hugging Face. The model was released under the Apache\n",
"Score\t 0.5644012181648649\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"Node ID\t bea70bf8-5da1-4ce4-a0e2-7e89019c4ebf\n",
"Text\t Commercial purposes.\n",
"Mathstral 7B\n",
"Another 7B model that Mistral released on 16 July 2024. it's focused on STEM subjects, it achieved 56.6% on MATH benchmark and 63.47% on MMLU. it was released under Apache 2.0 license. it has a context length of 32k tokens. it was produced in collaboration with Project Numina.\n",
"Codestral Mamba 7B\n",
"Codestral Mamba is based on Mamba 2 architecture, which allows it to generate responses even with longer input. and unlike Codestral, it was released under Apache 2.0 license. only instruct version was released.\n",
"\n",
"\n",
"=== API-Only Models ===\n",
"Unlike Mistral 7B, Mixtral 8x7B and Mixtral 8x22B, the following models are closed-source and only available through the Mistral API.\n",
"\n",
"\n",
"==== Mistral Large ====\n",
"Mistral Large was launched on February 26, 2024, and Mistral claims it is second in the world only to OpenAI's GPT-4.\n",
"It is fluent in English, French, Spanish, German, and Italian, with Mistral claiming understanding of both grammar and cultural context, and provides coding capabilities. As of early 2024, it is Mistral's flagship AI. It is also available on Microsoft Azure.\n",
"Mistral Large 2 was released in July 2024, with 123B parameters and 128k context window. It is available for free with a Mistral Research Licence, and with a commercial licence for commercial purposes. \n",
"\n",
"\n",
"==== Mistral Medium ====\n",
"Mistral Medium is trained in various languages including English, French, Italian, German, Spanish and code with a score of 8.6 on MT-Bench. It is ranked in performance above Claude and below GPT-4 on the LMSys ELO Arena benchmark. \n",
"The number of parameters, and architecture of Mistral Medium is not known as Mistral has not published public information about it.\n",
"\n",
"\n",
"==== Mistral Small ====\n",
"Like the Large model, Small was launched on February 26, 2024. It is intended to be a light-weight model for low latency, with better performance than Mixtral 8x7B.\n",
"\n",
"\n",
"== References ==\n",
"\n",
"\n",
"== External links ==\n",
"Official website\n",
"Score\t 0.5546834502171653\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
]
}
],
"source": [
"for src in res.source_nodes:\n",
" print(\"Node ID\\t\", src.node_id)\n",
" print(\"Text\\t\", src.text)\n",
" print(\"Score\\t\", src.score)\n",
" print(\"-_\" * 20)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OpenAI Agent"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.agent.openai import OpenAIAgent"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"system_message_openai_agent = \"\"\"You are an AI teacher, answering questions from students of an applied AI course on Large Language Models (LLMs or llm) and Retrieval Augmented Generation (RAG) for LLMs. Topics covered include training models, fine-tuning models, giving memory to LLMs, prompting tips, hallucinations and bias, vector databases, transformer architectures, embeddings, RAG frameworks, Langchain, LlamaIndex, making LLMs interact with tools, AI agents, reinforcement learning with human feedback. Questions should be understood in this context.\n",
"\n",
"Your answers are aimed to teach students, so they should be complete, clear, and easy to understand.\n",
"\n",
"Use the available tools to gather insights pertinent to the field of AI. Always use two tools at the same time. These tools accept a string (a user query rewritten as a statement) and return informative content regarding the domain of AI.\n",
"e.g:\n",
"User question: 'How can I fine-tune an LLM?'\n",
"Input to the tool: 'Fine-tuning an LLM'\n",
"\n",
"User question: How can quantize an LLM?\n",
"Input to the tool: 'Quantization for LLMs'\n",
"\n",
"User question: 'Teach me how to build an AI agent\"'\n",
"Input to the tool: 'Building an AI Agent'\n",
"\n",
"Only some information returned by the tools might be relevant to the question, so ignore the irrelevant part and answer the question with what you have.\n",
"\n",
"Your responses are exclusively based on the output provided by the tools. Refrain from incorporating information not directly obtained from the tool's responses.\n",
"\n",
"When the conversation deepens or shifts focus within a topic, adapt your input to the tools to reflect these nuances. This means if a user requests further elaboration on a specific aspect of a previously discussed topic, you should reformulate your input to the tool to capture this new angle or more profound layer of inquiry.\n",
"\n",
"Provide comprehensive answers, ideally structured in multiple paragraphs, drawing from the tool's variety of relevant details. The depth and breadth of your responses should align with the scope and specificity of the information retrieved.\n",
"\n",
"Should the tools repository lack information on the queried topic, politely inform the user that the question transcends the bounds of your current knowledge base, citing the absence of relevant content in the tool's documentation.\n",
"\n",
"At the end of your answers, always invite the students to ask deeper questions about the topic if they have any. Make sure to reformulate the question to the tool to capture this new angle or more profound layer of inquiry.\n",
"\n",
"Do not refer to the documentation directly, but use the information provided within it to answer questions.\n",
"\n",
"If code is provided in the information, share it with the students. It's important to provide complete code blocks so they can execute the code when they copy and paste them.\n",
"\n",
"Make sure to format your answers in Markdown format, including code blocks and snippets.\n",
"\n",
"Politely reject questions not related to AI, while being cautious not to reject unfamiliar terms or acronyms too quickly.\"\"\""
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [],
"source": [
"from llama_index.llms.openai import OpenAI\n",
"\n",
"llm = OpenAI(model=\"gpt-4o\")\n",
"\n",
"agent = OpenAIAgent.from_tools(\n",
" llm=llm,\n",
" tools=[llama_tool, mistral_tool],\n",
" system_prompt=system_message_openai_agent,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The **LLaMA (Large Language Model Meta AI)** is a large language model developed by Meta AI. It is designed to perform a variety of natural language processing tasks by leveraging a vast amount of training data and sophisticated neural network architectures.\n",
"\n",
"### Key Points about LLaMA:\n",
"\n",
"1. **Developer**: Meta AI, the artificial intelligence research division of Meta (formerly Facebook).\n",
"2. **Model Size**: One of the notable versions is the LLaMA 70B, which indicates it has 70 billion parameters.\n",
"3. **Performance**: The LLaMA models are designed to be competitive with other state-of-the-art language models. However, in some benchmarks, models like Mistral AI's Mixtral 8x7B have been noted to outperform LLaMA 70B.\n",
"4. **Variants**: There are different versions of the LLaMA model, including LLaMA-2, which represents an evolution or improvement over the original LLaMA models.\n",
"\n",
"LLaMA models are part of the broader trend in AI research to develop increasingly powerful and capable language models that can understand and generate human-like text. These models are used in a variety of applications, from chatbots to advanced research tools.\n",
"\n",
"Feel free to ask more specific questions about LLaMA or any other related topics!\n"
]
}
],
"source": [
"response = agent.chat(\"What is the LLama model?\")\n",
"print(response.response)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The **Mistral model** refers to a range of large language models (LLMs) developed by Mistral AI. These models are designed to perform a variety of natural language processing tasks and are available in both open-source and API-only formats.\n",
"\n",
"### Key Points about Mistral Models:\n",
"\n",
"1. **Developer**: Mistral AI, a company focused on developing advanced language models.\n",
"2. **Model Variants**:\n",
" - **Open-Source Models**:\n",
" - **Mistral 7B**: A general-purpose language model.\n",
" - **Mixtral 8x7B**: A model that combines multiple smaller models to enhance performance.\n",
" - **Mixtral 8x22B**: Another composite model with a larger parameter count.\n",
" - **Mathstral 7B**: Specialized for tasks related to STEM (Science, Technology, Engineering, and Mathematics).\n",
" - **Codestral Mamba 7B**: Tailored for code generation tasks.\n",
" - **API-Only Models**:\n",
" - **Mistral Small**\n",
" - **Mistral Medium**\n",
" - **Mistral Large**\n",
" \n",
"3. **Performance**: Mistral models are designed to be competitive with other leading LLMs such as LLaMA and GPT-3.5. They have shown strong performance in various benchmarks, reflecting their robustness and versatility.\n",
"\n",
"4. **Specialization**: Some models are specialized for specific tasks, such as code generation or STEM-related tasks, while others are more general-purpose.\n",
"\n",
"Mistral AI's commitment to both open-source innovation and performance excellence is evident in the diversity and capabilities of their models. These models cater to a wide range of applications, from general text generation to specialized domains.\n",
"\n",
"If you have more specific questions about any of the Mistral models or their applications, feel free to ask!\n"
]
}
],
"source": [
"response = agent.chat(\"What is the Mistral model?\")\n",
"print(response.response)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"I'm here to help with questions related to AI, particularly in the context of Large Language Models (LLMs) and related technologies. If you have any questions about these topics, feel free to ask!\n",
"\n",
"For non-AI related queries, such as recipes, you might want to consult a cooking website or a recipe book. If you have any questions about AI, please let me know!\n"
]
}
],
"source": [
"response = agent.chat(\"Write the recipe for a chocolate cake.\")\n",
"print(response.response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Code related questions to GPT-4o, the remaining questions to Gemini"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"I0000 00:00:1723473141.439669 5318658 check_gcp_environment_no_op.cc:29] ALTS: Platforms other than Linux and Windows are not supported\n"
]
}
],
"source": [
"from llama_index.agent.openai import OpenAIAgent\n",
"from llama_index.llms.openai import OpenAI\n",
"from llama_index.llms.gemini import Gemini\n",
"from llama_index.core.query_engine import RouterQueryEngine\n",
"from llama_index.core.selectors import PydanticSingleSelector\n",
"from llama_index.core.tools import QueryEngineTool\n",
"\n",
"# initialize LLMs\n",
"gpt_4o_llm = OpenAI(model=\"gpt-4o\")\n",
"gemini_llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=1, max_tokens=512)\n",
"\n",
"# define query engines\n",
"llama_query_engine_code = vector_index.as_query_engine(\n",
" llm=gpt_4o_llm,\n",
" similarity_top_k=3,\n",
" embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
")\n",
"llama_query_engine_rest = vector_index.as_query_engine(\n",
" llm=gemini_llm,\n",
" similarity_top_k=3,\n",
" embed_model=OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"text_search\"),\n",
")\n",
"\n",
"# define tools for Llama\n",
"llama_tool_code = QueryEngineTool.from_defaults(\n",
" query_engine=llama_query_engine_code,\n",
" description=\"Useful for code-related questions about the LLama LLM created by Meta\",\n",
" name=\"LLamaCodeTool\",\n",
")\n",
"llama_tool_rest = QueryEngineTool.from_defaults(\n",
" query_engine=llama_query_engine_rest,\n",
" description=\"Useful for non-code-related questions about the LLama LLM created by Meta\",\n",
" name=\"LLamaGeneralTool\",\n",
")\n",
"\n",
"# Initialize OpenAIAgent with the system message and the router query engine\n",
"agent = OpenAIAgent.from_tools(\n",
" llm=gpt_4o_llm, # The base LLM, used only if no other tools apply\n",
" tools=[llama_tool_code, llama_tool_rest],\n",
" system_prompt=system_message_openai_agent,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LLamaGeneralTool\n",
"LLamaCodeTool\n"
]
}
],
"source": [
"# Test the agent with a code-related question\n",
"response = agent.chat(\"How do I fine-tune the LLama model? Write the code for it.\")\n",
"for source in response.sources:\n",
" print(source.tool_name)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"LLamaGeneralTool\n"
]
}
],
"source": [
"# Test the agent with a code-related question\n",
"response = agent.chat(\"What is the relationship between Llama and Meta?\")\n",
"for source in response.sources:\n",
" print(source.tool_name)"
]
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyMcBonOXFUEEHJsKREchiOp",
"include_colab_link": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0245f2604e4d49c8bd0210302746c47b": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"134210510d49476e959dd7d032bbdbdc": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"13b9c5395bca4c3ba21265240cb936cf": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"193aef33d9184055bb9223f56d456de6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3fbabd8a8660461ba5e7bc08ef39139a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_df2365556ae242a2ab1a119f9a31a561",
"IPY_MODEL_5f4b9d32df8f446e858e4c289dc282f9",
"IPY_MODEL_5b588f83a15d42d9aca888e06bbd95ff"
],
"layout": "IPY_MODEL_ad073bca655540809e39f26538d2ec0d"
}
},
"47a4586384274577a726c57605e7f8d9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"4a172e8c6aa44e41a42fc1d9cf714fd0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e7937a1bc68441a080374911a6563376",
"placeholder": "β",
"style": "IPY_MODEL_e532ed7bfef34f67b5fcacd9534eb789",
"value": " 108/108 [00:03<00:00, 33.70it/s]"
}
},
"5b588f83a15d42d9aca888e06bbd95ff": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_af9b6ae927dd4764b9692507791bc67e",
"placeholder": "β",
"style": "IPY_MODEL_134210510d49476e959dd7d032bbdbdc",
"value": " 14/14 [00:00<00:00, 21.41it/s]"
}
},
"5c7973afd79349ed997a69120d0629b2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"5f4b9d32df8f446e858e4c289dc282f9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_96a3bdece738481db57e811ccb74a974",
"max": 14,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_5c7973afd79349ed997a69120d0629b2",
"value": 14
}
},
"5f9bb065c2b74d2e8ded32e1306a7807": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_73a06bc546a64f7f99a9e4a135319dcd",
"IPY_MODEL_ce48deaf4d8c49cdae92bfdbb3a78df0",
"IPY_MODEL_4a172e8c6aa44e41a42fc1d9cf714fd0"
],
"layout": "IPY_MODEL_0245f2604e4d49c8bd0210302746c47b"
}
},
"73a06bc546a64f7f99a9e4a135319dcd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e956dfab55084a9cbe33c8e331b511e7",
"placeholder": "β",
"style": "IPY_MODEL_cb394578badd43a89850873ad2526542",
"value": "Generating embeddings: 100%"
}
},
"96a3bdece738481db57e811ccb74a974": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"abfc9aa911ce4a5ea81c7c451f08295f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"ad073bca655540809e39f26538d2ec0d": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"af9b6ae927dd4764b9692507791bc67e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"cb394578badd43a89850873ad2526542": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ce48deaf4d8c49cdae92bfdbb3a78df0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_193aef33d9184055bb9223f56d456de6",
"max": 108,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_abfc9aa911ce4a5ea81c7c451f08295f",
"value": 108
}
},
"df2365556ae242a2ab1a119f9a31a561": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_13b9c5395bca4c3ba21265240cb936cf",
"placeholder": "β",
"style": "IPY_MODEL_47a4586384274577a726c57605e7f8d9",
"value": "Parsing nodes: 100%"
}
},
"e532ed7bfef34f67b5fcacd9534eb789": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"e7937a1bc68441a080374911a6563376": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e956dfab55084a9cbe33c8e331b511e7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|