File size: 17,485 Bytes
a2a9a44
 
 
 
 
 
 
 
 
 
 
84f8c13
a2a9a44
 
 
 
9adb76c
a2a9a44
9adb76c
a2a9a44
 
 
 
84f8c13
a2a9a44
 
 
 
 
 
 
 
 
 
84f8c13
a2a9a44
 
 
 
 
 
 
 
 
 
 
 
 
84f8c13
a2a9a44
 
 
 
 
 
 
9adb76c
 
84f8c13
a2a9a44
 
 
 
84f8c13
a2a9a44
 
 
84f8c13
a2a9a44
 
84f8c13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a9a44
 
 
 
 
84f8c13
a2a9a44
84f8c13
a2a9a44
9adb76c
84f8c13
 
 
a2a9a44
 
 
 
84f8c13
 
 
a2a9a44
 
 
3e7bb9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a9a44
 
84f8c13
a2a9a44
84f8c13
a2a9a44
 
 
 
84f8c13
 
 
 
 
a2a9a44
84f8c13
a2a9a44
 
 
 
84f8c13
a2a9a44
 
 
84f8c13
 
a4ba306
84f8c13
a2a9a44
 
 
 
84f8c13
a2a9a44
 
 
9adb76c
a2a9a44
 
 
 
84f8c13
a2a9a44
84f8c13
a2a9a44
 
 
 
 
 
84f8c13
a2a9a44
84f8c13
a2a9a44
 
 
 
 
 
84f8c13
a2a9a44
 
 
 
 
 
 
 
 
 
 
 
9adb76c
a2a9a44
9adb76c
 
 
 
 
 
 
 
 
 
a2a9a44
9adb76c
 
 
 
 
 
a2a9a44
 
 
84f8c13
a2a9a44
 
 
 
 
 
9adb76c
a2a9a44
 
 
 
 
 
 
 
 
 
9adb76c
a2a9a44
 
 
84f8c13
 
e0aadb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84f8c13
a4ba306
84f8c13
e0aadb4
 
 
 
 
 
a2a9a44
 
 
 
9adb76c
a2a9a44
9adb76c
 
 
 
 
 
 
 
 
 
a2a9a44
e0aadb4
 
 
 
 
 
a2a9a44
 
 
 
9adb76c
a2a9a44
9adb76c
 
 
 
 
 
 
 
 
 
 
 
a2a9a44
 
 
 
 
 
9adb76c
a2a9a44
9adb76c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a9a44
 
 
 
 
 
 
 
 
 
e0aadb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2a9a44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
84f8c13
a2a9a44
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Create AI-Tutor vector database"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "from dotenv import load_dotenv\n",
    "\n",
    "load_dotenv(\"../.env\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import nest_asyncio\n",
    "\n",
    "nest_asyncio.apply()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import chromadb\n",
    "\n",
    "# create client and a new collection\n",
    "# chromadb.EphemeralClient saves data in-memory.\n",
    "chroma_client = chromadb.PersistentClient(path=\"./ai-tutor-db\")\n",
    "chroma_collection = chroma_client.create_collection(\"ai-tutor-db\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from llama_index.vector_stores.chroma import ChromaVectorStore\n",
    "from llama_index.core import StorageContext\n",
    "\n",
    "vector_store = ChromaVectorStore(chroma_collection=chroma_collection)\n",
    "\n",
    "# Define a storage context object using the created vector store.\n",
    "storage_context = StorageContext.from_defaults(vector_store=vector_store)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "from llama_index.core.schema import TextNode\n",
    "\n",
    "def load_jsonl_create_nodes(filepath):\n",
    "    nodes = []  # List to hold the created node objects\n",
    "    with open(filepath, \"r\") as file:\n",
    "        for line in file:\n",
    "            # Load each line as a JSON object\n",
    "            json_obj = json.loads(line)\n",
    "            # Extract required information\n",
    "            title = json_obj.get(\"title\")\n",
    "            url = json_obj.get(\"url\")\n",
    "            content = json_obj.get(\"content\")\n",
    "            source = json_obj.get(\"source\")\n",
    "            # Create a TextNode object and append to the list\n",
    "            node = TextNode(\n",
    "                text=content,\n",
    "                metadata={\"title\": title, \"url\": url, \"source\": source},\n",
    "                excluded_embed_metadata_keys=[\"title\", \"url\", \"source\"],\n",
    "                excluded_llm_metadata_keys=[\"title\", \"url\", \"source\"],\n",
    "            )\n",
    "            nodes.append(node)\n",
    "    return nodes"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "filepath = \"../combined_data.jsonl\"\n",
    "nodes = load_jsonl_create_nodes(filepath)\n",
    "\n",
    "print(f\"Loaded {len(nodes)} nodes/chunks from the JSONL file\\n \")\n",
    "\n",
    "node = nodes[0]\n",
    "print(f\"ID: {node.id_} \\nText: {node.text}, \\nMetadata: {node.metadata}\")\n",
    "\n",
    "print(\"\\n\")\n",
    "\n",
    "node = nodes[-10000]\n",
    "print(f\"ID: {node.id_} \\nText: {node.text}, \\nMetadata: {node.metadata}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# # Create the pipeline to apply the transformation on each chunk,\n",
    "# # and store the transformed text in the chroma vector store.\n",
    "# pipeline = IngestionPipeline(\n",
    "#     transformations=[\n",
    "#         text_splitter,\n",
    "#         QuestionsAnsweredExtractor(questions=3, llm=llm),\n",
    "#         SummaryExtractor(summaries=[\"prev\", \"self\"], llm=llm),\n",
    "#         KeywordExtractor(keywords=10, llm=llm),\n",
    "#         OpenAIEmbedding(),\n",
    "#     ],\n",
    "#     vector_store=vector_store\n",
    "# )\n",
    "\n",
    "# nodes = pipeline.run(documents=documents, show_progress=True);"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from llama_index.embeddings.openai import OpenAIEmbedding\n",
    "from llama_index.core import VectorStoreIndex\n",
    "\n",
    "# embeds = OpenAIEmbedding(model=\"text-embedding-3-small\", mode=\"similarity\")\n",
    "# embeds = OpenAIEmbedding(model=\"text-embedding-3-large\", mode=\"similarity\")\n",
    "embeds = OpenAIEmbedding(model=\"text-embedding-3-large\", mode=\"text_search\")\n",
    "# embeds = OpenAIEmbedding(model=\"text-embedding-ada-002\", mode=\"similarity\")\n",
    "\n",
    "# Build index / generate embeddings using OpenAI.\n",
    "index = VectorStoreIndex(nodes=nodes, show_progress=True, use_async=True, storage_context=storage_context, embed_model=embeds, insert_batch_size=3000,)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from llama_index.llms.openai import OpenAI\n",
    "\n",
    "llm = OpenAI(temperature=0, model=\"gpt-3.5-turbo\", max_tokens=None)\n",
    "query_engine = index.as_query_engine(llm=llm, similarity_top_k=5, embed_model=embeds)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "res = query_engine.query(\"What is the LLaMa model?\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "res.response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "for src in res.source_nodes:\n",
    "  print(\"Node ID\\t\", src.node_id)\n",
    "  print(\"Title\\t\", src.metadata['title'])\n",
    "  print(\"Text\\t\", src.text)\n",
    "  print(\"Score\\t\", src.score)\n",
    "  print(\"Metadata\\t\", src.metadata) \n",
    "  print(\"-_\"*20)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Load DB from disk"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:chromadb.telemetry.product.posthog:Anonymized telemetry enabled. See                     https://docs.trychroma.com/telemetry for more information.\n",
      "INFO:chromadb.api.segment:Collection ai-tutor-db is not created.\n"
     ]
    }
   ],
   "source": [
    "import logging\n",
    "\n",
    "logger = logging.getLogger(__name__)\n",
    "logging.basicConfig(level=logging.INFO)\n",
    "\n",
    "\n",
    "import chromadb\n",
    "from llama_index.vector_stores.chroma import ChromaVectorStore\n",
    "# Create your index\n",
    "db2 = chromadb.PersistentClient(path=\"./ai-tutor-db\")\n",
    "chroma_collection = db2.get_or_create_collection(\"ai-tutor-db\")\n",
    "vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create your index\n",
    "from llama_index.core import VectorStoreIndex\n",
    "index = VectorStoreIndex.from_vector_store(vector_store=vector_store)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "from llama_index.embeddings.openai import OpenAIEmbedding\n",
    "from llama_index.llms.openai import OpenAI\n",
    "from llama_index.core.vector_stores import (\n",
    "    ExactMatchFilter,\n",
    "    MetadataFilters,\n",
    "    MetadataFilter,\n",
    "    FilterOperator,\n",
    "    FilterCondition,\n",
    ")\n",
    "\n",
    "filters = MetadataFilters(\n",
    "    filters=[\n",
    "        MetadataFilter(key=\"source\", value=\"lanchain_course\"),\n",
    "        MetadataFilter(key=\"source\", value=\"langchain_docs\"),\n",
    "    ],\n",
    "    condition=FilterCondition.OR,\n",
    ")\n",
    "\n",
    "llm = OpenAI(temperature=0, model=\"gpt-3.5-turbo\", max_tokens=None)\n",
    "embeds = OpenAIEmbedding(model=\"text-embedding-3-large\", mode=\"text_search\")\n",
    "# query_engine = index.as_query_engine(\n",
    "#     llm=llm, similarity_top_k=5, embed_model=embeds, verbose=True, streaming=True, filters=filters\n",
    "# )\n",
    "query_engine = index.as_query_engine(\n",
    "    llm=llm, similarity_top_k=5, embed_model=embeds, verbose=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:httpx:HTTP Request: POST https://api.openai.com/v1/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://api.openai.com/v1/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    }
   ],
   "source": [
    "res = query_engine.query(\"What is the LLama model?\")\n",
    "\n",
    "# history = \"\"   \n",
    "# for token in res.response_gen:\n",
    "#     history += token\n",
    "#     print(history)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'The LLama model is a family of large language models (LLMs) released by Meta AI, with different model sizes ranging from 7 billion to 65 billion parameters in the first version. The developers reported that the 13 billion parameter model outperformed larger models like GPT-3 and was competitive with state-of-the-art models like PaLM and Chinchilla. The model weights were released to the research community under a noncommercial license, but they were leaked to the public shortly after.'"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "res.response"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Node ID\t 6f8c13d8-1458-444c-857b-c1dc11d7f134\n",
      "Source\t wikipedia\n",
      "Title\t LLaMA\n",
      "Text\t LLaMA LLaMA (Large Language Model Meta AI) is a family of large language models (LLMs), released by Meta AI starting in February 2023. For the first version of LLaMa, four model sizes were trained: 7, 13, 33 and 65 billion parameters. LLaMA's developers reported that the 13B parameter model's performance on most NLP benchmarks exceeded that of the much larger GPT-3 (with 175B parameters) and that the largest model was competitive with state of the art models such as PaLM and Chinchilla. Whereas the most powerful LLMs have generally been accessible only through limited APIs (if at all), Meta released LLaMA's model weights to the research community under a noncommercial license. Within a week of LLaMA's release, its weights were leaked to the public on 4chan via BitTorrent. In July 2023, Meta released several models as Llama 2, using 7, 13 and 70 billion parameters.\n",
      "Score\t 0.5133216393307418\n",
      "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
      "Node ID\t 7226ba39-fd90-4790-879f-9f6af7b4ac6d\n",
      "Source\t towards_ai\n",
      "Title\t Fine-Tuning a Llama-2 7B Model for Python Code Generation\n",
      "Text\t New Llama-2 model In mid-July, Meta released its new family of pre-trained and finetuned models called Llama-2, with an open source and commercial character to facilitate its use and expansion. The base model was released with a chat version and sizes 7B, 13B, and 70B. Together with the models, the corresponding papers were published describing their characteristics and relevant points of the learning process, which provide very interesting information on the subject. For pre-training, 40% more tokens were used, reaching 2T, the context length was doubled and the grouped-query attention (GQA) technique was applied to speed up inference on the heavier 70B model. On the standard transformer architecture, RMSNorm normalization, SwiGLU activation, and rotatory positional embedding are used, the context length reaches 4096 tokens, and an Adam optimizer is applied with a cosine learning rate schedule, a weight decay of 0.1 and gradient clipping. \n",
      "Score\t 0.49851718223076963\n",
      "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
      "Node ID\t a654d9c1-fa81-4ad8-b16a-06a49f145636\n",
      "Source\t hf_transformers\n",
      "Title\t Overview\n",
      "Text\t The Open-Llama model was proposed in Open-Llama project by community developer s-JoL.\n",
      "The model is mainly based on LLaMA with some modifications, incorporating memory-efficient attention from Xformers, stable embedding from Bloom, and shared input-output embedding from PaLM.\n",
      "And the model is pre-trained on both Chinese and English, which gives it better performance on Chinese language tasks.\n",
      "This model was contributed by s-JoL.\n",
      "The original code can be found Open-Llama.\n",
      "Checkpoint and usage can be found at s-JoL/Open-Llama-V1.\n",
      "Score\t 0.4888355341806359\n",
      "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
      "Node ID\t 846101f6-d9c5-4356-b569-c4383fe9b481\n",
      "Source\t towards_ai\n",
      "Title\t Meta's Llama 2: Revolutionizing Open Source Language Models for Commercial Use\n",
      "Text\t II. Llama 2 Model Flavors Llama 2 is available in four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters. While 7B, 13B, and 70B have already been released, the 34B model is still awaited. The pretrained variant, trained on a whopping 2 trillion tokens, boasts a context window of 4096 tokens, twice the size of its predecessor Llama 1. Meta also released a Llama 2 fine-tuned model for chat applications that was trained on over 1 million human annotations. Such extensive training comes at a cost, with the 70B model taking a staggering 1720320 GPU hours to train. The context window's length determines the amount of content the model can process at once, making Llama 2 a powerful language model in terms of scale and efficiency. \n",
      "Score\t 0.4818213806198265\n",
      "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
      "Node ID\t bfffeff1-76d5-4ad4-9988-38be59ad9562\n",
      "Source\t hf_transformers\n",
      "Title\t Overview\n",
      "Text\t d 34B parameters each. All models are trained on sequences of 16k tokens and show improvements on inputs with up to 100k tokens. 7B and 13B Code Llama and Code Llama - Instruct variants support infilling based on surrounding content. Code Llama reaches state-of-the-art performance among open models on several code benchmarks, with scores of up to 53% and 55% on HumanEval and MBPP, respectively. Notably, Code Llama - Python 7B outperforms Llama 2 70B on HumanEval and MBPP, and all our models outperform every other publicly available model on MultiPL-E. We release Code Llama under a permissive license that allows for both research and commercial use.\n",
      "Check out all Code Llama models here and the officially released ones in the codellama org.\n",
      "The Llama2 family models, on which Code Llama is based, were trained using bfloat16, but the original inference uses float16. Let’s look at the different precisions: float32: PyTorch convention on model initialization is to load models in float32, no\n",
      "Score\t 0.4799444818466049\n",
      "-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
     ]
    }
   ],
   "source": [
    "for src in res.source_nodes:\n",
    "  print(\"Node ID\\t\", src.node_id)\n",
    "  print(\"Source\\t\", src.metadata['source'])\n",
    "  print(\"Title\\t\", src.metadata['title'])\n",
    "  print(\"Text\\t\", src.text)\n",
    "  print(\"Score\\t\", src.score)\n",
    "  print(\"-_\"*20)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from IPython.display import Markdown, display\n",
    "# define prompt viewing function\n",
    "def display_prompt_dict(prompts_dict):\n",
    "    for k, p in prompts_dict.items():\n",
    "        text_md = f\"**Prompt Key**: {k}<br>\" f\"**Text:** <br>\"\n",
    "        display(Markdown(text_md))\n",
    "        print(p.get_template())\n",
    "        display(Markdown(\"<br><br>\"))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "prompts_dict = query_engine.get_prompts()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "display_prompt_dict(prompts_dict)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "env",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}