Spaces:
Sleeping
Sleeping
File size: 24,515 Bytes
aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 4dcbb03 aeeba33 4dcbb03 0bfedbd 4dcbb03 aeeba33 4dcbb03 0bfedbd 4dcbb03 aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 4dcbb03 aeeba33 0bfedbd aeeba33 4dcbb03 aeeba33 4dcbb03 aeeba33 4dcbb03 aeeba33 4dcbb03 aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 4dcbb03 aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd 4dcbb03 aeeba33 0bfedbd aeeba33 4dcbb03 aeeba33 4dcbb03 aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd aeeba33 0bfedbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/towardsai/ai-tutor-rag-system/blob/main/notebooks/Larger_Context_Larger_N.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qtOtOvibOBfW"
},
"source": [
"# Install Packages and Setup Variables\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "I-hKKV6GEkro",
"outputId": "ae3ff694-3b58-427f-f0c9-29e855c4efca"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m320.6/320.6 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.1/1.1 MB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m526.8/526.8 kB\u001b[0m \u001b[31m10.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m15.4/15.4 MB\u001b[0m \u001b[31m20.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m26.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m75.6/75.6 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m20.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m92.0/92.0 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m62.4/62.4 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m41.3/41.3 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m6.8/6.8 MB\u001b[0m \u001b[31m40.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m59.9/59.9 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m107.0/107.0 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m283.7/283.7 kB\u001b[0m \u001b[31m14.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m56.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m142.5/142.5 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m54.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m71.9/71.9 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m53.6/53.6 kB\u001b[0m \u001b[31m5.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m141.9/141.9 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m290.4/290.4 kB\u001b[0m \u001b[31m27.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m52.5/52.5 kB\u001b[0m \u001b[31m4.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m130.5/130.5 kB\u001b[0m \u001b[31m14.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m26.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m67.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m1.2/1.2 MB\u001b[0m \u001b[31m59.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m130.2/130.2 kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m307.7/307.7 kB\u001b[0m \u001b[31m22.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m47.2/47.2 kB\u001b[0m \u001b[31m5.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m8.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[2K \u001b[90mββββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m49.2/49.2 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n",
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n",
"imageio 2.31.6 requires pillow<10.1.0,>=8.3.2, but you have pillow 10.3.0 which is incompatible.\n",
"spacy 3.7.4 requires typer<0.10.0,>=0.3.0, but you have typer 0.12.3 which is incompatible.\n",
"weasel 0.3.4 requires typer<0.10.0,>=0.3.0, but you have typer 0.12.3 which is incompatible.\u001b[0m\u001b[31m\n",
"\u001b[0m"
]
}
],
"source": [
"!pip install -q llama-index==0.10.37 openai==1.30.1 tiktoken==0.7.0 chromadb==0.5.0 llama-index-llms-gemini==0.1.10 llama-index-vector-stores-chroma==0.1.7"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"id": "5UZDtKWJWZ3c"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Set the following API Keys in the Python environment. Will be used later.\n",
"os.environ[\"OPENAI_API_KEY\"] = \"[OPENAI_API_KEY]\"\n",
"os.environ[\"GOOGLE_API_KEY\"] = \"[GOOGLE_API_KEY]\""
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "P8un03bdrwIn"
},
"source": [
"# Load Gemini Model\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"id": "dFvjEffurv6T"
},
"outputs": [],
"source": [
"from llama_index.llms.gemini import Gemini\n",
"\n",
"llm = Gemini(model=\"models/gemini-pro\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fcX9C-AThh15"
},
"source": [
"# Download the Vector Store\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "_oi1avNUhhYd",
"outputId": "4e4bd6d7-884d-43a3-d322-9e979114860e"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2024-06-07 16:54:00-- https://github.com/AlaFalaki/tutorial_notebooks/raw/main/data/vectorstore.zip\n",
"Resolving github.com (github.com)... 140.82.114.4\n",
"Connecting to github.com (github.com)|140.82.114.4|:443... connected.\n",
"HTTP request sent, awaiting response... 302 Found\n",
"Location: https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/vectorstore.zip [following]\n",
"--2024-06-07 16:54:01-- https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/vectorstore.zip\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.109.133, 185.199.110.133, 185.199.111.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.109.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 1479982 (1.4M) [application/zip]\n",
"Saving to: βvectorstore.zipβ\n",
"\n",
"vectorstore.zip 100%[===================>] 1.41M --.-KB/s in 0.07s \n",
"\n",
"2024-06-07 16:54:01 (21.4 MB/s) - βvectorstore.zipβ saved [1479982/1479982]\n",
"\n"
]
}
],
"source": [
"!wget https://github.com/AlaFalaki/tutorial_notebooks/raw/main/data/vectorstore.zip"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "8BM4sU-bWZ0l",
"outputId": "2dcb0bdc-d9ca-451f-cdb6-fa04c64ddb8d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Archive: vectorstore.zip\n",
" creating: mini-llama-articles/\n",
" creating: mini-llama-articles/a361e92f-9895-41b6-ba72-4ad38e9875bd/\n",
" inflating: mini-llama-articles/a361e92f-9895-41b6-ba72-4ad38e9875bd/data_level0.bin \n",
" inflating: mini-llama-articles/a361e92f-9895-41b6-ba72-4ad38e9875bd/header.bin \n",
" extracting: mini-llama-articles/a361e92f-9895-41b6-ba72-4ad38e9875bd/link_lists.bin \n",
" inflating: mini-llama-articles/a361e92f-9895-41b6-ba72-4ad38e9875bd/length.bin \n",
" inflating: mini-llama-articles/chroma.sqlite3 \n"
]
}
],
"source": [
"!unzip vectorstore.zip"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "VikY0MnrWZyC"
},
"outputs": [],
"source": [
"import chromadb\n",
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"\n",
"# Load the vector store from the local storage.\n",
"db = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
"chroma_collection = db.get_or_create_collection(\"mini-llama-articles\")\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "o87JiKrUWZvG"
},
"outputs": [],
"source": [
"from llama_index.core import VectorStoreIndex\n",
"\n",
"# Create the index based on the vector store.\n",
"index = VectorStoreIndex.from_vector_store(vector_store, llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-H8c-pUpqu7W",
"outputId": "0b7f036b-f70e-40cd-92f5-4027fbd51fa3"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"top_2 results:\n",
"\t The Llama 2 model is available in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"top_4 results:\n",
"\t The Llama 2 model is available in four different sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"top_6 results:\n",
"\t The Llama 2 model comes in four different sizes with varying parameter counts: 7 billion, 13 billion, 34 billion, and 70 billion parameters.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"top_8 results:\n",
"\t The LLaMA2 model has parameter sizes of 7 billion, 13 billion, 34 billion, and 70 billion.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"top_10 results:\n",
"\t The LLaMA2 model has four different sizes of parameters: 7 billion, 13 billion, 34 billion, and 70 billion.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"top_15 results:\n",
"\t The LLaMA2 model has 7 billion parameters.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"top_20 results:\n",
"\t The LLaMA2 model has 7 billion parameters.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"top_25 results:\n",
"\t The LLaMA2 model has 7 billion parameters.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n",
"top_30 results:\n",
"\t The LLaMA2 model has 7 billion parameters.\n",
"-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_\n"
]
}
],
"source": [
"for i in [2, 4, 6, 8, 10, 15, 20, 25, 30]:\n",
"\n",
" query_engine = index.as_query_engine(similarity_top_k=i)\n",
"\n",
" res = query_engine.query(\"How many parameters LLaMA2 model has?\")\n",
"\n",
" print(f\"top_{i} results:\")\n",
" print(\"\\t\", res.response)\n",
" print(\"-_\" * 20)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eB83yG_o0cjO"
},
"source": [
"# Evaluate\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "TblvUrZ97TV6",
"outputId": "8d4bf9ce-7309-41c8-9705-9e02f7de5203"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2024-06-05 19:43:23-- https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/rag_eval_dataset.json\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 476714 (466K) [text/plain]\n",
"Saving to: βrag_eval_dataset.jsonβ\n",
"\n",
"\rrag_eval_dataset.js 0%[ ] 0 --.-KB/s \rrag_eval_dataset.js 100%[===================>] 465.54K --.-KB/s in 0.02s \n",
"\n",
"2024-06-05 19:43:24 (25.0 MB/s) - βrag_eval_dataset.jsonβ saved [476714/476714]\n",
"\n"
]
}
],
"source": [
"!wget https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/rag_eval_dataset.json"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "fqRm2AMPrNE7"
},
"outputs": [],
"source": [
"# We can also load the dataset from a previously saved json file.\n",
"from llama_index.core.evaluation import EmbeddingQAFinetuneDataset\n",
"\n",
"rag_eval_dataset = EmbeddingQAFinetuneDataset.from_json(\"./rag_eval_dataset.json\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1GagTcRz7XkU",
"outputId": "2c03eebc-2362-4934-fb19-8bdcb6ceb44d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"top_2 faithfulness_score: 1.0\n",
"top_2 relevancy_score: 1.0\n",
"top_4 faithfulness_score: 1.0\n",
"top_4 relevancy_score: 0.95\n",
"top_6 faithfulness_score: 1.0\n",
"top_6 relevancy_score: 0.95\n",
"top_8 faithfulness_score: 1.0\n",
"top_8 relevancy_score: 1.0\n",
"top_10 faithfulness_score: 1.0\n",
"top_10 relevancy_score: 1.0\n",
"top_15 faithfulness_score: 0.95\n",
"top_15 relevancy_score: 0.95\n",
"top_20 faithfulness_score: 1.0\n",
"top_20 relevancy_score: 0.95\n",
"top_25 faithfulness_score: 0.95\n",
"top_25 relevancy_score: 1.0\n",
"top_30 faithfulness_score: 0.95\n",
"top_30 relevancy_score: 0.95\n"
]
}
],
"source": [
"from llama_index.core.evaluation import (\n",
" RelevancyEvaluator,\n",
" FaithfulnessEvaluator,\n",
" BatchEvalRunner,\n",
")\n",
"from llama_index.llms.openai import OpenAI\n",
"\n",
"llm_gpt4 = OpenAI(temperature=0, model=\"gpt-4o\")\n",
"\n",
"faithfulness_evaluator = FaithfulnessEvaluator(llm=llm_gpt4)\n",
"relevancy_evaluator = RelevancyEvaluator(llm=llm_gpt4)\n",
"\n",
"# Run evaluation\n",
"queries = list(rag_eval_dataset.queries.values())\n",
"batch_eval_queries = queries[:20]\n",
"\n",
"runner = BatchEvalRunner(\n",
" {\"faithfulness\": faithfulness_evaluator, \"relevancy\": relevancy_evaluator},\n",
" workers=32,\n",
")\n",
"\n",
"for i in [2, 4, 6, 8, 10, 15, 20, 25, 30]:\n",
" # Set Faithfulness and Relevancy evaluators\n",
" query_engine = index.as_query_engine(similarity_top_k=i, llm=llm)\n",
"\n",
" eval_results = await runner.aevaluate_queries(\n",
" query_engine, queries=batch_eval_queries\n",
" )\n",
" faithfulness_score = sum(\n",
" result.passing for result in eval_results[\"faithfulness\"]\n",
" ) / len(eval_results[\"faithfulness\"])\n",
" print(f\"top_{i} faithfulness_score: {faithfulness_score}\")\n",
"\n",
" relevancy_score = sum(result.passing for result in eval_results[\"relevancy\"]) / len(\n",
" eval_results[\"relevancy\"]\n",
" )\n",
" print(f\"top_{i} relevancy_score: {relevancy_score}\")"
]
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyO54/MUoEirbXFWGbR7On3U",
"include_colab_link": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|