File size: 5,581 Bytes
9e34a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import os
import shutil
import tempfile
import time
from pathlib import Path

import librosa
import torch
from huggingface_hub import snapshot_download

from fam.llm.adapters import FlattenedInterleavedEncodec2Codebook
from fam.llm.decoders import EncodecDecoder
from fam.llm.fast_inference_utils import build_model, main
from fam.llm.inference import (
    EncodecDecoder,
    InferenceConfig,
    Model,
    TiltedEncodec,
    TrainedBPETokeniser,
    get_cached_embedding,
    get_cached_file,
    get_enhancer,
)
from fam.llm.utils import (
    check_audio_file,
    get_default_dtype,
    get_device,
    normalize_text,
)


class TTS:
    END_OF_AUDIO_TOKEN = 1024

    def __init__(
        self, model_name: str = "metavoiceio/metavoice-1B-v0.1", *, seed: int = 1337, output_dir: str = "outputs"
    ):
        """
        model_name (str): refers to the model identifier from the Hugging Face Model Hub (https://huggingface.co/metavoiceio)
        """

        # NOTE: this needs to come first so that we don't change global state when we want to use
        # the torch.compiled-model.
        self._dtype = get_default_dtype()
        self._device = get_device()
        self._model_dir = snapshot_download(repo_id=model_name, cache_dir = '/proj/afosr/metavoice/cache')
        self.first_stage_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=self.END_OF_AUDIO_TOKEN)
        self.output_dir = output_dir
        os.makedirs(self.output_dir, exist_ok=True)

        second_stage_ckpt_path = f"{self._model_dir}/second_stage.pt"
        config_second_stage = InferenceConfig(
            ckpt_path=second_stage_ckpt_path,
            num_samples=1,
            seed=seed,
            device=self._device,
            dtype=self._dtype,
            compile=False,
            init_from="resume",
            output_dir=self.output_dir,
        )
        data_adapter_second_stage = TiltedEncodec(end_of_audio_token=self.END_OF_AUDIO_TOKEN)
        self.llm_second_stage = Model(
            config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
        )
        self.enhancer = get_enhancer("df")

        self.precision = {"float16": torch.float16, "bfloat16": torch.bfloat16}[self._dtype]
        self.model, self.tokenizer, self.smodel, self.model_size = build_model(
            precision=self.precision,
            checkpoint_path=Path(f"{self._model_dir}/first_stage.pt"),
            spk_emb_ckpt_path=Path(f"{self._model_dir}/speaker_encoder.pt"),
            device=self._device,
            compile=True,
            compile_prefill=True,
        )

    def synthesise(self, text: str, spk_ref_path: str, top_p=0.95, guidance_scale=3.0, temperature=1.0) -> str:
        """
        text: Text to speak
        spk_ref_path: Path to speaker reference file. Min. 30s of audio required. Supports both local paths & public URIs. Audio formats: wav, flac & mp3
        top_p: Top p for sampling applied to first-stage model. Range [0.9, 1.0] are good. This is a measure of speech stability - improves text following for a challenging speaker
        guidance_scale: Guidance scale [1.0, 3.0] for sampling. This is a measure of speaker similarity - how closely to match speaker identity and speech style.
        temperature: Temperature for sampling applied to both LLMs (first & second stage)

        returns: path to speech .wav file
        """
        text = normalize_text(text)
        spk_ref_path = get_cached_file(spk_ref_path)
        check_audio_file(spk_ref_path)
        spk_emb = get_cached_embedding(
            spk_ref_path,
            self.smodel,
        ).to(device=self._device, dtype=self.precision)

        start = time.time()
        # first stage LLM
        tokens = main(
            model=self.model,
            tokenizer=self.tokenizer,
            model_size=self.model_size,
            prompt=text,
            spk_emb=spk_emb,
            top_p=torch.tensor(top_p, device=self._device, dtype=self.precision),
            guidance_scale=torch.tensor(guidance_scale, device=self._device, dtype=self.precision),
            temperature=torch.tensor(temperature, device=self._device, dtype=self.precision),
        )
        _, extracted_audio_ids = self.first_stage_adapter.decode([tokens])

        b_speaker_embs = spk_emb.unsqueeze(0)

        # second stage LLM + multi-band diffusion model
        wav_files = self.llm_second_stage(
            texts=[text],
            encodec_tokens=[torch.tensor(extracted_audio_ids, dtype=torch.int32, device=self._device).unsqueeze(0)],
            speaker_embs=b_speaker_embs,
            batch_size=1,
            guidance_scale=None,
            top_p=None,
            top_k=200,
            temperature=1.0,
            max_new_tokens=None,
        )

        # enhance using deepfilternet
        wav_file = wav_files[0]
        with tempfile.NamedTemporaryFile(suffix=".wav") as enhanced_tmp:
            self.enhancer(str(wav_file) + ".wav", enhanced_tmp.name)
            shutil.copy2(enhanced_tmp.name, str(wav_file) + ".wav")
            print(f"\nSaved audio to {wav_file}.wav")

        # calculating real-time factor (RTF)
        time_to_synth_s = time.time() - start
        audio, sr = librosa.load(str(wav_file) + ".wav")
        duration_s = librosa.get_duration(y=audio, sr=sr)
        print(f"\nTotal time to synth (s): {time_to_synth_s}")
        print(f"Real-time factor: {time_to_synth_s / duration_s:.2f}")

        return str(wav_file) + ".wav"


if __name__ == "__main__":
    tts = TTS()