Spaces:
Sleeping
Sleeping
tonychenxyz
commited on
Commit
•
9e34a62
1
Parent(s):
020aa91
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Dockerfile +33 -0
- LICENSE +201 -0
- all_emo_dirs.pkl +3 -0
- app.py +364 -0
- assets/favicon.ico +0 -0
- assets/logo.png +0 -0
- cache/.locks/models--Salesforce--SFR-Embedding-Mistral/42dcdfcaf9e42a488d4be06500dd771d7aa11e83.lock +0 -0
- cache/.locks/models--Salesforce--SFR-Embedding-Mistral/afbfcebcf9df8c0af538cd5b6f616bd1d7a9739eba4b81d871545b1b562d6b0a.lock +0 -0
- cache/.locks/models--Salesforce--SFR-Embedding-Mistral/c19160bba3c1267f959caf6d13fb07f9ea232e04.lock +0 -0
- cache/.locks/models--Salesforce--SFR-Embedding-Mistral/ef62bf21fb2396937098b86ae80c68813b229c18.lock +0 -0
- cache/.locks/models--Salesforce--SFR-Embedding-Mistral/f7640f94e81bb7f4f04daf1668850b38763a13d9.lock +0 -0
- cache/.locks/models--Salesforce--SFR-Embedding-Mistral/f8194e4e9432d287bf257d4a7d4a0f2446c32da8.lock +0 -0
- cache/.locks/models--Salesforce--SFR-Embedding-Mistral/feb95adc7e79e878999ba5a1d3ddfe9f16eff0f1.lock +0 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/.no_exist/938c560d1c236aa563b2dbdf084f28ab28bccb11/model.safetensors +0 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/blobs/42dcdfcaf9e42a488d4be06500dd771d7aa11e83 +4 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/blobs/c19160bba3c1267f959caf6d13fb07f9ea232e04 +27 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/blobs/ef62bf21fb2396937098b86ae80c68813b229c18 +7 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/blobs/f7640f94e81bb7f4f04daf1668850b38763a13d9 +14 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/blobs/f8194e4e9432d287bf257d4a7d4a0f2446c32da8 +297 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/blobs/feb95adc7e79e878999ba5a1d3ddfe9f16eff0f1 +3398 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/refs/main +1 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/README.md +1 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/config.json +1 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/config_sentence_transformers.json +1 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/model.safetensors.index.json +1 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/modules.json +1 -0
- cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/sentence_bert_config.json +1 -0
- docker-compose.yml +61 -0
- emo-knob-teaser-1.svg +0 -0
- fam/__init__.py +0 -0
- fam/__pycache__/__init__.cpython-310.pyc +0 -0
- fam/__pycache__/__init__.cpython-39.pyc +0 -0
- fam/llm/__init__.py +0 -0
- fam/llm/__pycache__/__init__.cpython-310.pyc +0 -0
- fam/llm/__pycache__/__init__.cpython-39.pyc +0 -0
- fam/llm/__pycache__/decoders.cpython-310.pyc +0 -0
- fam/llm/__pycache__/decoders.cpython-39.pyc +0 -0
- fam/llm/__pycache__/enhancers.cpython-310.pyc +0 -0
- fam/llm/__pycache__/enhancers.cpython-39.pyc +0 -0
- fam/llm/__pycache__/fast_inference.cpython-310.pyc +0 -0
- fam/llm/__pycache__/fast_inference.cpython-39.pyc +0 -0
- fam/llm/__pycache__/fast_inference_utils.cpython-310.pyc +0 -0
- fam/llm/__pycache__/fast_inference_utils.cpython-39.pyc +0 -0
- fam/llm/__pycache__/fast_model.cpython-310.pyc +0 -0
- fam/llm/__pycache__/fast_model.cpython-39.pyc +0 -0
- fam/llm/__pycache__/inference.cpython-310.pyc +0 -0
- fam/llm/__pycache__/inference.cpython-39.pyc +0 -0
- fam/llm/__pycache__/model.cpython-310.pyc +0 -0
- fam/llm/__pycache__/model.cpython-39.pyc +0 -0
- fam/llm/__pycache__/utils.cpython-310.pyc +0 -0
Dockerfile
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 as base
|
2 |
+
|
3 |
+
# Install system dependencies in a single RUN command to reduce layers
|
4 |
+
# Combine apt-get update, upgrade, and installation of packages. Clean up in the same layer to reduce image size.
|
5 |
+
RUN apt-get update && \
|
6 |
+
apt-get upgrade -y && \
|
7 |
+
apt-get install -y python3.10 python3-pip git wget curl build-essential && \
|
8 |
+
apt-get autoremove -y && \
|
9 |
+
apt-get clean && \
|
10 |
+
rm -rf /var/lib/apt/lists/*
|
11 |
+
|
12 |
+
# install ffmpeg
|
13 |
+
RUN wget https://johnvansickle.com/ffmpeg/builds/ffmpeg-git-amd64-static.tar.xz &&\
|
14 |
+
wget https://johnvansickle.com/ffmpeg/builds/ffmpeg-git-amd64-static.tar.xz.md5 &&\
|
15 |
+
md5sum -c ffmpeg-git-amd64-static.tar.xz.md5 &&\
|
16 |
+
tar xvf ffmpeg-git-amd64-static.tar.xz &&\
|
17 |
+
mv ffmpeg-git-*-static/ffprobe ffmpeg-git-*-static/ffmpeg /usr/local/bin/ &&\
|
18 |
+
rm -rf ffmpeg-git-*
|
19 |
+
|
20 |
+
WORKDIR /app
|
21 |
+
|
22 |
+
COPY requirements.txt requirements.txt
|
23 |
+
|
24 |
+
RUN pip install --no-cache-dir packaging wheel torch
|
25 |
+
RUN pip install --no-cache-dir audiocraft # HACK: installation fails within the requirements.txt
|
26 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
27 |
+
RUN pip install --no-cache-dir --upgrade torch torchaudio
|
28 |
+
|
29 |
+
COPY . .
|
30 |
+
|
31 |
+
RUN pip install --no-cache-dir -e .
|
32 |
+
|
33 |
+
ENTRYPOINT ["python3.10", "serving.py"]
|
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
all_emo_dirs.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:beadd1f3c7eada0fa99dbdecc5c370036c1c044955a02f019f879bdc6f5fefcb
|
3 |
+
size 20343
|
app.py
ADDED
@@ -0,0 +1,364 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
|
4 |
+
|
5 |
+
is_prod = True
|
6 |
+
if os.environ.get('PROD_MODE') == 'local':
|
7 |
+
is_prod = False
|
8 |
+
|
9 |
+
import pickle
|
10 |
+
|
11 |
+
if not is_prod:
|
12 |
+
import os
|
13 |
+
os.environ['HF_HOME'] = '/proj/afosr/metavoice/cache'
|
14 |
+
os.environ['TRANSFORMERS_CACHE'] = '/proj/afosr/metavoice/cache'
|
15 |
+
os.environ['HF_DATASETS_CACHE'] = '/proj/afosr/metavoice/cache'
|
16 |
+
os.environ['HF_METRICS_CACHE'] = '/proj/afosr/metavoice/cache'
|
17 |
+
os.environ['HF_MODULES_CACHE'] = '/proj/afosr/metavoice/cache'
|
18 |
+
ffmpeg_path = '/home/hc3295/ffmpeg_build/bin'
|
19 |
+
os.environ['PATH'] += os.pathsep + ffmpeg_path
|
20 |
+
|
21 |
+
|
22 |
+
import shutil
|
23 |
+
import tempfile
|
24 |
+
import time
|
25 |
+
from pathlib import Path
|
26 |
+
|
27 |
+
import librosa
|
28 |
+
import torch
|
29 |
+
from huggingface_hub import snapshot_download
|
30 |
+
|
31 |
+
from fam.llm.adapters import FlattenedInterleavedEncodec2Codebook
|
32 |
+
from fam.llm.decoders import EncodecDecoder
|
33 |
+
from fam.llm.fast_inference_utils import build_model, main
|
34 |
+
from fam.llm.inference import (
|
35 |
+
EncodecDecoder,
|
36 |
+
InferenceConfig,
|
37 |
+
Model,
|
38 |
+
TiltedEncodec,
|
39 |
+
TrainedBPETokeniser,
|
40 |
+
get_cached_embedding,
|
41 |
+
get_cached_file,
|
42 |
+
get_enhancer,
|
43 |
+
)
|
44 |
+
from fam.llm.utils import (
|
45 |
+
check_audio_file,
|
46 |
+
get_default_dtype,
|
47 |
+
get_device,
|
48 |
+
normalize_text,
|
49 |
+
)
|
50 |
+
|
51 |
+
debug = False
|
52 |
+
if not debug:
|
53 |
+
model_name = "metavoiceio/metavoice-1B-v0.1"
|
54 |
+
seed = 1337
|
55 |
+
output_dir = "outputs"
|
56 |
+
_dtype = get_default_dtype()
|
57 |
+
_device = 'cuda:0'
|
58 |
+
_model_dir = snapshot_download(repo_id=model_name)
|
59 |
+
first_stage_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=1024)
|
60 |
+
output_dir = output_dir
|
61 |
+
os.makedirs(output_dir, exist_ok=True)
|
62 |
+
|
63 |
+
second_stage_ckpt_path = f"{_model_dir}/second_stage.pt"
|
64 |
+
config_second_stage = InferenceConfig(
|
65 |
+
ckpt_path=second_stage_ckpt_path,
|
66 |
+
num_samples=1,
|
67 |
+
seed=seed,
|
68 |
+
device=_device,
|
69 |
+
dtype=_dtype,
|
70 |
+
compile=False,
|
71 |
+
init_from="resume",
|
72 |
+
output_dir=output_dir,
|
73 |
+
)
|
74 |
+
data_adapter_second_stage = TiltedEncodec(end_of_audio_token=1024)
|
75 |
+
llm_second_stage = Model(
|
76 |
+
config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
|
77 |
+
)
|
78 |
+
enhancer = get_enhancer("df")
|
79 |
+
|
80 |
+
precision = {"float16": torch.float16, "bfloat16": torch.bfloat16}[_dtype]
|
81 |
+
model, tokenizer, smodel, model_size = build_model(
|
82 |
+
precision=precision,
|
83 |
+
checkpoint_path=Path(f"{_model_dir}/first_stage.pt"),
|
84 |
+
spk_emb_ckpt_path=Path(f"{_model_dir}/speaker_encoder.pt"),
|
85 |
+
device=_device,
|
86 |
+
compile=True,
|
87 |
+
compile_prefill=True,
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
def generate_sample(text, emo_dir = None, source_path = None, emo_path = None, neutral_path = None, strength = 0.1, top_p = 0.95, guidance_scale = 3.0, preset_dropdown = None, toggle = None):
|
92 |
+
|
93 |
+
print('text', text)
|
94 |
+
print('emo_dir', emo_dir)
|
95 |
+
print('source_path', source_path)
|
96 |
+
print('emo_path', emo_path)
|
97 |
+
print('neutral_path', neutral_path)
|
98 |
+
print('strength', strength)
|
99 |
+
print('top_p', top_p)
|
100 |
+
print('guidance_scale', guidance_scale)
|
101 |
+
|
102 |
+
if toggle == RADIO_CHOICES[0]:
|
103 |
+
source_path = PRESET_VOICES[preset_dropdown]
|
104 |
+
source_path = get_cached_file(source_path)
|
105 |
+
check_audio_file(source_path)
|
106 |
+
source_emb = get_cached_embedding(source_path, smodel).to(device=_device, dtype=precision)
|
107 |
+
|
108 |
+
if emo_dir == EMO_NAMES[0]:
|
109 |
+
emo_path = get_cached_file(emo_path)
|
110 |
+
check_audio_file(emo_path)
|
111 |
+
emo_emb = get_cached_embedding(emo_path, smodel).to(device=_device, dtype=precision)
|
112 |
+
|
113 |
+
neutral_path = get_cached_file(neutral_path)
|
114 |
+
check_audio_file(neutral_path)
|
115 |
+
neutral_emb = get_cached_embedding(neutral_path, smodel).to(device=_device, dtype=precision)
|
116 |
+
|
117 |
+
emo_dir = emo_emb - neutral_emb
|
118 |
+
emo_dir = emo_dir / torch.norm(emo_dir, p=2)
|
119 |
+
else:
|
120 |
+
emo_dir = torch.tensor(ALL_EMO_DIRS[emo_dir], device=_device, dtype=precision)
|
121 |
+
|
122 |
+
|
123 |
+
edited_emb = source_emb + strength * emo_dir
|
124 |
+
edited_emb = edited_emb.to(device=_device, dtype=precision)
|
125 |
+
|
126 |
+
temperature=1.0
|
127 |
+
text = normalize_text(text)
|
128 |
+
|
129 |
+
start = time.time()
|
130 |
+
# first stage LLM
|
131 |
+
tokens = main(
|
132 |
+
model=model,
|
133 |
+
tokenizer=tokenizer,
|
134 |
+
model_size=model_size,
|
135 |
+
prompt=text,
|
136 |
+
spk_emb=edited_emb,
|
137 |
+
top_p=torch.tensor(top_p, device=_device, dtype=precision),
|
138 |
+
guidance_scale=torch.tensor(guidance_scale, device=_device, dtype=precision),
|
139 |
+
temperature=torch.tensor(temperature, device=_device, dtype=precision),
|
140 |
+
)
|
141 |
+
text_ids, extracted_audio_ids = first_stage_adapter.decode([tokens])
|
142 |
+
|
143 |
+
b_speaker_embs = edited_emb.unsqueeze(0)
|
144 |
+
|
145 |
+
# second stage LLM + multi-band diffusion model
|
146 |
+
wav_files = llm_second_stage(
|
147 |
+
texts=[text],
|
148 |
+
encodec_tokens=[torch.tensor(extracted_audio_ids, dtype=torch.int32, device=_device).unsqueeze(0)],
|
149 |
+
speaker_embs=b_speaker_embs,
|
150 |
+
batch_size=1,
|
151 |
+
guidance_scale=None,
|
152 |
+
top_p=None,
|
153 |
+
top_k=200,
|
154 |
+
temperature=1.0,
|
155 |
+
max_new_tokens=None,
|
156 |
+
)
|
157 |
+
|
158 |
+
wav_file = wav_files[0]
|
159 |
+
with tempfile.NamedTemporaryFile(suffix=".wav") as enhanced_tmp:
|
160 |
+
enhancer(str(wav_file) + ".wav", enhanced_tmp.name)
|
161 |
+
shutil.copy2(enhanced_tmp.name, str(wav_file) + ".wav")
|
162 |
+
print(f"\nSaved audio to {wav_file}.wav")
|
163 |
+
|
164 |
+
output_path = str(wav_file) + ".wav"
|
165 |
+
return output_path
|
166 |
+
|
167 |
+
|
168 |
+
ALL_EMO_DIRS = pickle.load(open('all_emo_dirs.pkl', 'rb'))
|
169 |
+
EMO_NAMES = ['Upload your own sample'] + list(ALL_EMO_DIRS.keys())
|
170 |
+
|
171 |
+
RADIO_CHOICES = ["Preset voices", "Upload your voice"]
|
172 |
+
MAX_CHARS = 220
|
173 |
+
PRESET_VOICES = {
|
174 |
+
# female
|
175 |
+
"Bria": "https://cdn.themetavoice.xyz/speakers%2Fbria.mp3",
|
176 |
+
# male
|
177 |
+
"Alex": "https://cdn.themetavoice.xyz/speakers/alex.mp3",
|
178 |
+
"Jacob": "https://cdn.themetavoice.xyz/speakers/jacob.wav",
|
179 |
+
}
|
180 |
+
|
181 |
+
|
182 |
+
def denormalise_top_p(top_p):
|
183 |
+
# returns top_p in the range [0.9, 1.0]
|
184 |
+
return round(0.9 + top_p / 100, 2)
|
185 |
+
|
186 |
+
|
187 |
+
def denormalise_guidance(guidance):
|
188 |
+
# returns guidance in the range [1.0, 3.0]
|
189 |
+
return 1 + ((guidance - 1) * (3 - 1)) / (5 - 1)
|
190 |
+
|
191 |
+
|
192 |
+
def _check_file_size(path):
|
193 |
+
if not path:
|
194 |
+
return
|
195 |
+
filesize = os.path.getsize(path)
|
196 |
+
filesize_mb = filesize / 1024 / 1024
|
197 |
+
if filesize_mb >= 50:
|
198 |
+
raise gr.Error(f"Please upload a sample less than 20MB for voice cloning. Provided: {round(filesize_mb)} MB")
|
199 |
+
|
200 |
+
|
201 |
+
def _handle_edge_cases(to_say, upload_target):
|
202 |
+
if not to_say:
|
203 |
+
raise gr.Error("Please provide text to synthesise")
|
204 |
+
|
205 |
+
if len(to_say) > MAX_CHARS:
|
206 |
+
gr.Warning(
|
207 |
+
f"Max {MAX_CHARS} characters allowed. Provided: {len(to_say)} characters. Truncating and generating speech...Result at the end can be unstable as a result."
|
208 |
+
)
|
209 |
+
|
210 |
+
if not upload_target:
|
211 |
+
return
|
212 |
+
|
213 |
+
check_audio_file(upload_target) # check file duration to be atleast 30s
|
214 |
+
_check_file_size(upload_target)
|
215 |
+
|
216 |
+
|
217 |
+
def tts(to_say, top_p, guidance, toggle, preset_dropdown, upload_target):
|
218 |
+
try:
|
219 |
+
d_top_p = denormalise_top_p(top_p)
|
220 |
+
d_guidance = denormalise_guidance(guidance)
|
221 |
+
|
222 |
+
_handle_edge_cases(to_say, upload_target)
|
223 |
+
|
224 |
+
to_say = to_say if len(to_say) < MAX_CHARS else to_say[:MAX_CHARS]
|
225 |
+
|
226 |
+
return TTS_MODEL.synthesise(
|
227 |
+
text=to_say,
|
228 |
+
spk_ref_path=PRESET_VOICES[preset_dropdown] if toggle == RADIO_CHOICES[0] else upload_target,
|
229 |
+
top_p=d_top_p,
|
230 |
+
guidance_scale=d_guidance,
|
231 |
+
)
|
232 |
+
except Exception as e:
|
233 |
+
raise gr.Error(f"Something went wrong. Reason: {str(e)}")
|
234 |
+
|
235 |
+
|
236 |
+
def change_voice_selection_layout(choice):
|
237 |
+
if choice == RADIO_CHOICES[0]:
|
238 |
+
return [gr.update(visible=True), gr.update(visible=False)]
|
239 |
+
|
240 |
+
return [gr.update(visible=False), gr.update(visible=True)]
|
241 |
+
|
242 |
+
def change_emotion_selection_layout(choice):
|
243 |
+
if choice == EMO_NAMES[0]:
|
244 |
+
return [gr.update(visible=True)]
|
245 |
+
|
246 |
+
return [gr.update(visible=False)]
|
247 |
+
|
248 |
+
title = """
|
249 |
+
</style>
|
250 |
+
<h1 style="margin-top: 10px;" class="page-title">Demo for <span style="margin-left: 10px;background-color: #E0FEE4;padding: 15px;border-radius: 10px;">🎛️ EmoKnob</span></h1>
|
251 |
+
"""
|
252 |
+
|
253 |
+
description = """
|
254 |
+
- While existing TTS services do not allow fine-grained control over emotions, EmoKnob allows users to control emotion in speech with few-shot samples.
|
255 |
+
- In this demo, you can select from a few preset voices and upload your own emotional samples to clone.
|
256 |
+
- You can then use preset emotion or upload your own emotional-neutral sample pair to control emotions.
|
257 |
+
- You can adjust the strength of the emotion by using the slider.
|
258 |
+
|
259 |
+
|
260 |
+
EmoKnob is uses [MetaVoice](https://github.com/metavoiceio/metavoice-src) as voice cloning backbone.
|
261 |
+
"""
|
262 |
+
|
263 |
+
with gr.Blocks(title="EmoKnob Demo") as demo:
|
264 |
+
gr.Markdown(title)
|
265 |
+
gr.Image("emo-knob-teaser-1.svg", show_label=False, container=False)
|
266 |
+
|
267 |
+
with gr.Row():
|
268 |
+
gr.Markdown(description)
|
269 |
+
|
270 |
+
with gr.Row():
|
271 |
+
with gr.Column():
|
272 |
+
to_say = gr.TextArea(
|
273 |
+
label=f"What should I say!? (max {MAX_CHARS} characters).",
|
274 |
+
lines=4,
|
275 |
+
value="To be or not to be, that is the question.",
|
276 |
+
)
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
with gr.Row(), gr.Column():
|
281 |
+
# voice settings
|
282 |
+
top_p = gr.Slider(
|
283 |
+
value=0.95,
|
284 |
+
minimum=0.0,
|
285 |
+
maximum=10.0,
|
286 |
+
step=1.0,
|
287 |
+
label="Speech Stability - improves text following for a challenging speaker",
|
288 |
+
)
|
289 |
+
guidance = gr.Slider(
|
290 |
+
value=3.0,
|
291 |
+
minimum=1.0,
|
292 |
+
maximum=5.0,
|
293 |
+
step=1.0,
|
294 |
+
label="Speaker similarity - How closely to match speaker identity and speech style.",
|
295 |
+
)
|
296 |
+
|
297 |
+
strength = gr.Slider(
|
298 |
+
value=0.1,
|
299 |
+
minimum=0.0,
|
300 |
+
maximum=5.0,
|
301 |
+
step=0.01,
|
302 |
+
label="Strength - how strong the emotion is. Setting it to too large a value may result in unstable output.",
|
303 |
+
)
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
# voice select
|
308 |
+
toggle = gr.Radio(choices=RADIO_CHOICES, label="Choose voice", value=RADIO_CHOICES[0])
|
309 |
+
|
310 |
+
with gr.Row(visible=True) as row_1:
|
311 |
+
preset_dropdown = gr.Dropdown(
|
312 |
+
PRESET_VOICES.keys(), label="Preset voices", value=list(PRESET_VOICES.keys())[0]
|
313 |
+
)
|
314 |
+
with gr.Accordion("Preview: Preset voices", open=False):
|
315 |
+
for label, path in PRESET_VOICES.items():
|
316 |
+
gr.Audio(value=path, label=label)
|
317 |
+
|
318 |
+
with gr.Row(visible=False) as row_2:
|
319 |
+
upload_target = gr.Audio(
|
320 |
+
sources=["upload"],
|
321 |
+
type="filepath",
|
322 |
+
label="Upload a clean sample to clone.",
|
323 |
+
)
|
324 |
+
with gr.Row():
|
325 |
+
emotion_name = gr.Radio(choices=EMO_NAMES, label="Emotion", value=EMO_NAMES[0])
|
326 |
+
with gr.Row(visible=True) as row_3:
|
327 |
+
upload_neutral = gr.Audio(
|
328 |
+
sources=["upload"],
|
329 |
+
type="filepath",
|
330 |
+
label="Upload a neutral sample to compute the emotion direction. Should be same speaker as the emotional sample.",
|
331 |
+
)
|
332 |
+
|
333 |
+
upload_emo = gr.Audio(
|
334 |
+
sources=["upload"],
|
335 |
+
type="filepath",
|
336 |
+
label="Upload an emotional sample to compute the emotion direction. Should be same speaker as the neutral sample.",
|
337 |
+
)
|
338 |
+
|
339 |
+
toggle.change(
|
340 |
+
change_voice_selection_layout,
|
341 |
+
inputs=toggle,
|
342 |
+
outputs=[row_1, row_2],
|
343 |
+
)
|
344 |
+
|
345 |
+
# emotion_name.change(
|
346 |
+
# change_emotion_selection_layout,
|
347 |
+
# inputs=emotion_name,
|
348 |
+
# outputs=[row_3],
|
349 |
+
# )
|
350 |
+
|
351 |
+
with gr.Column():
|
352 |
+
speech = gr.Audio(
|
353 |
+
type="filepath",
|
354 |
+
label="Model says...",
|
355 |
+
)
|
356 |
+
|
357 |
+
submit = gr.Button("Generate Speech")
|
358 |
+
submit.click(
|
359 |
+
fn=generate_sample,
|
360 |
+
inputs=[to_say, emotion_name, upload_target, upload_emo, upload_neutral, strength, top_p, guidance, preset_dropdown, toggle],
|
361 |
+
outputs=speech,
|
362 |
+
)
|
363 |
+
|
364 |
+
demo.launch()
|
assets/favicon.ico
ADDED
assets/logo.png
ADDED
cache/.locks/models--Salesforce--SFR-Embedding-Mistral/42dcdfcaf9e42a488d4be06500dd771d7aa11e83.lock
ADDED
File without changes
|
cache/.locks/models--Salesforce--SFR-Embedding-Mistral/afbfcebcf9df8c0af538cd5b6f616bd1d7a9739eba4b81d871545b1b562d6b0a.lock
ADDED
File without changes
|
cache/.locks/models--Salesforce--SFR-Embedding-Mistral/c19160bba3c1267f959caf6d13fb07f9ea232e04.lock
ADDED
File without changes
|
cache/.locks/models--Salesforce--SFR-Embedding-Mistral/ef62bf21fb2396937098b86ae80c68813b229c18.lock
ADDED
File without changes
|
cache/.locks/models--Salesforce--SFR-Embedding-Mistral/f7640f94e81bb7f4f04daf1668850b38763a13d9.lock
ADDED
File without changes
|
cache/.locks/models--Salesforce--SFR-Embedding-Mistral/f8194e4e9432d287bf257d4a7d4a0f2446c32da8.lock
ADDED
File without changes
|
cache/.locks/models--Salesforce--SFR-Embedding-Mistral/feb95adc7e79e878999ba5a1d3ddfe9f16eff0f1.lock
ADDED
File without changes
|
cache/models--Salesforce--SFR-Embedding-Mistral/.no_exist/938c560d1c236aa563b2dbdf084f28ab28bccb11/model.safetensors
ADDED
File without changes
|
cache/models--Salesforce--SFR-Embedding-Mistral/blobs/42dcdfcaf9e42a488d4be06500dd771d7aa11e83
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 4096,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
cache/models--Salesforce--SFR-Embedding-Mistral/blobs/c19160bba3c1267f959caf6d13fb07f9ea232e04
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/e5-mistral-7b-instruct",
|
3 |
+
"architectures": [
|
4 |
+
"MistralModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"pad_token_id": 2,
|
19 |
+
"rms_norm_eps": 1e-05,
|
20 |
+
"rope_theta": 10000.0,
|
21 |
+
"sliding_window": 4096,
|
22 |
+
"tie_word_embeddings": false,
|
23 |
+
"torch_dtype": "float16",
|
24 |
+
"transformers_version": "4.37.0",
|
25 |
+
"use_cache": false,
|
26 |
+
"vocab_size": 32000
|
27 |
+
}
|
cache/models--Salesforce--SFR-Embedding-Mistral/blobs/ef62bf21fb2396937098b86ae80c68813b229c18
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.37.2",
|
5 |
+
"pytorch": "2.1.0+cu121"
|
6 |
+
}
|
7 |
+
}
|
cache/models--Salesforce--SFR-Embedding-Mistral/blobs/f7640f94e81bb7f4f04daf1668850b38763a13d9
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
cache/models--Salesforce--SFR-Embedding-Mistral/blobs/f8194e4e9432d287bf257d4a7d4a0f2446c32da8
ADDED
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14221320192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"embed_tokens.weight": "model-00001-of-00003.safetensors",
|
7 |
+
"layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
26 |
+
"layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
28 |
+
"layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
30 |
+
"layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
31 |
+
"layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
35 |
+
"layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
116 |
+
"layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
125 |
+
"layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
143 |
+
"layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
148 |
+
"layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
152 |
+
"layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
215 |
+
"layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
224 |
+
"layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
242 |
+
"layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"norm.weight": "model-00003-of-00003.safetensors"
|
296 |
+
}
|
297 |
+
}
|
cache/models--Salesforce--SFR-Embedding-Mistral/blobs/feb95adc7e79e878999ba5a1d3ddfe9f16eff0f1
ADDED
@@ -0,0 +1,3398 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- sentence-transformers
|
5 |
+
- transformers
|
6 |
+
model-index:
|
7 |
+
- name: SFR-Embedding-Mistral
|
8 |
+
results:
|
9 |
+
- task:
|
10 |
+
type: Classification
|
11 |
+
dataset:
|
12 |
+
type: mteb/amazon_counterfactual
|
13 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
14 |
+
config: en
|
15 |
+
split: test
|
16 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
17 |
+
metrics:
|
18 |
+
- type: accuracy
|
19 |
+
value: 77.92537313432834
|
20 |
+
- type: ap
|
21 |
+
value: 40.86767661556651
|
22 |
+
- type: f1
|
23 |
+
value: 71.65758897929837
|
24 |
+
- task:
|
25 |
+
type: Classification
|
26 |
+
dataset:
|
27 |
+
type: mteb/amazon_polarity
|
28 |
+
name: MTEB AmazonPolarityClassification
|
29 |
+
config: default
|
30 |
+
split: test
|
31 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
32 |
+
metrics:
|
33 |
+
- type: accuracy
|
34 |
+
value: 95.967
|
35 |
+
- type: ap
|
36 |
+
value: 94.46300829592593
|
37 |
+
- type: f1
|
38 |
+
value: 95.96507173189292
|
39 |
+
- task:
|
40 |
+
type: Classification
|
41 |
+
dataset:
|
42 |
+
type: mteb/amazon_reviews_multi
|
43 |
+
name: MTEB AmazonReviewsClassification (en)
|
44 |
+
config: en
|
45 |
+
split: test
|
46 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
47 |
+
metrics:
|
48 |
+
- type: accuracy
|
49 |
+
value: 54.352000000000004
|
50 |
+
- type: f1
|
51 |
+
value: 53.636682615380174
|
52 |
+
- task:
|
53 |
+
type: Retrieval
|
54 |
+
dataset:
|
55 |
+
type: arguana
|
56 |
+
name: MTEB ArguAna
|
57 |
+
config: default
|
58 |
+
split: test
|
59 |
+
revision: None
|
60 |
+
metrics:
|
61 |
+
- type: ndcg_at_1
|
62 |
+
value: 43.314
|
63 |
+
- type: ndcg_at_2
|
64 |
+
value: 54.757
|
65 |
+
- type: ndcg_at_3
|
66 |
+
value: 58.84700000000001
|
67 |
+
- type: ndcg_at_5
|
68 |
+
value: 63.634
|
69 |
+
- type: ndcg_at_7
|
70 |
+
value: 65.741
|
71 |
+
- type: ndcg_at_10
|
72 |
+
value: 67.171
|
73 |
+
- type: ndcg_at_20
|
74 |
+
value: 68.585
|
75 |
+
- type: ndcg_at_30
|
76 |
+
value: 68.81
|
77 |
+
- type: ndcg_at_50
|
78 |
+
value: 68.932
|
79 |
+
- type: ndcg_at_70
|
80 |
+
value: 68.992
|
81 |
+
- type: ndcg_at_100
|
82 |
+
value: 69.014
|
83 |
+
- type: ndcg_at_200
|
84 |
+
value: 69.014
|
85 |
+
- type: ndcg_at_300
|
86 |
+
value: 69.014
|
87 |
+
- type: ndcg_at_500
|
88 |
+
value: 69.014
|
89 |
+
- type: ndcg_at_700
|
90 |
+
value: 69.014
|
91 |
+
- type: ndcg_at_1000
|
92 |
+
value: 69.014
|
93 |
+
- type: map_at_1
|
94 |
+
value: 43.314
|
95 |
+
- type: map_at_2
|
96 |
+
value: 52.383
|
97 |
+
- type: map_at_3
|
98 |
+
value: 55.108999999999995
|
99 |
+
- type: map_at_5
|
100 |
+
value: 57.772999999999996
|
101 |
+
- type: map_at_7
|
102 |
+
value: 58.718
|
103 |
+
- type: map_at_10
|
104 |
+
value: 59.256
|
105 |
+
- type: map_at_20
|
106 |
+
value: 59.668
|
107 |
+
- type: map_at_30
|
108 |
+
value: 59.709999999999994
|
109 |
+
- type: map_at_50
|
110 |
+
value: 59.727
|
111 |
+
- type: map_at_70
|
112 |
+
value: 59.733999999999995
|
113 |
+
- type: map_at_100
|
114 |
+
value: 59.73500000000001
|
115 |
+
- type: map_at_200
|
116 |
+
value: 59.73500000000001
|
117 |
+
- type: map_at_300
|
118 |
+
value: 59.73500000000001
|
119 |
+
- type: map_at_500
|
120 |
+
value: 59.73500000000001
|
121 |
+
- type: map_at_700
|
122 |
+
value: 59.73500000000001
|
123 |
+
- type: map_at_1000
|
124 |
+
value: 59.73500000000001
|
125 |
+
- type: recall_at_1
|
126 |
+
value: 43.314
|
127 |
+
- type: recall_at_2
|
128 |
+
value: 61.451
|
129 |
+
- type: recall_at_3
|
130 |
+
value: 69.63000000000001
|
131 |
+
- type: recall_at_5
|
132 |
+
value: 81.223
|
133 |
+
- type: recall_at_7
|
134 |
+
value: 87.33999999999999
|
135 |
+
- type: recall_at_10
|
136 |
+
value: 92.034
|
137 |
+
- type: recall_at_20
|
138 |
+
value: 97.44
|
139 |
+
- type: recall_at_30
|
140 |
+
value: 98.506
|
141 |
+
- type: recall_at_50
|
142 |
+
value: 99.14699999999999
|
143 |
+
- type: recall_at_70
|
144 |
+
value: 99.502
|
145 |
+
- type: recall_at_100
|
146 |
+
value: 99.644
|
147 |
+
- type: recall_at_200
|
148 |
+
value: 99.644
|
149 |
+
- type: recall_at_300
|
150 |
+
value: 99.644
|
151 |
+
- type: recall_at_500
|
152 |
+
value: 99.644
|
153 |
+
- type: recall_at_700
|
154 |
+
value: 99.644
|
155 |
+
- type: recall_at_1000
|
156 |
+
value: 99.644
|
157 |
+
- type: precision_at_1
|
158 |
+
value: 43.314
|
159 |
+
- type: precision_at_2
|
160 |
+
value: 30.725
|
161 |
+
- type: precision_at_3
|
162 |
+
value: 23.21
|
163 |
+
- type: precision_at_5
|
164 |
+
value: 16.245
|
165 |
+
- type: precision_at_7
|
166 |
+
value: 12.477
|
167 |
+
- type: precision_at_10
|
168 |
+
value: 9.203
|
169 |
+
- type: precision_at_20
|
170 |
+
value: 4.872
|
171 |
+
- type: precision_at_30
|
172 |
+
value: 3.2840000000000003
|
173 |
+
- type: precision_at_50
|
174 |
+
value: 1.983
|
175 |
+
- type: precision_at_70
|
176 |
+
value: 1.421
|
177 |
+
- type: precision_at_100
|
178 |
+
value: 0.996
|
179 |
+
- type: precision_at_200
|
180 |
+
value: 0.498
|
181 |
+
- type: precision_at_300
|
182 |
+
value: 0.332
|
183 |
+
- type: precision_at_500
|
184 |
+
value: 0.199
|
185 |
+
- type: precision_at_700
|
186 |
+
value: 0.14200000000000002
|
187 |
+
- type: precision_at_1000
|
188 |
+
value: 0.1
|
189 |
+
- type: mrr_at_1
|
190 |
+
value: 44.666
|
191 |
+
- type: mrr_at_2
|
192 |
+
value: 52.418
|
193 |
+
- type: mrr_at_3
|
194 |
+
value: 55.595000000000006
|
195 |
+
- type: mrr_at_5
|
196 |
+
value: 58.205
|
197 |
+
- type: mrr_at_7
|
198 |
+
value: 59.202999999999996
|
199 |
+
- type: mrr_at_10
|
200 |
+
value: 59.727
|
201 |
+
- type: mrr_at_20
|
202 |
+
value: 60.133
|
203 |
+
- type: mrr_at_30
|
204 |
+
value: 60.178
|
205 |
+
- type: mrr_at_50
|
206 |
+
value: 60.192
|
207 |
+
- type: mrr_at_70
|
208 |
+
value: 60.19799999999999
|
209 |
+
- type: mrr_at_100
|
210 |
+
value: 60.199999999999996
|
211 |
+
- type: mrr_at_200
|
212 |
+
value: 60.199999999999996
|
213 |
+
- type: mrr_at_300
|
214 |
+
value: 60.199999999999996
|
215 |
+
- type: mrr_at_500
|
216 |
+
value: 60.199999999999996
|
217 |
+
- type: mrr_at_700
|
218 |
+
value: 60.199999999999996
|
219 |
+
- type: mrr_at_1000
|
220 |
+
value: 60.199999999999996
|
221 |
+
- task:
|
222 |
+
type: Clustering
|
223 |
+
dataset:
|
224 |
+
type: mteb/arxiv-clustering-p2p
|
225 |
+
name: MTEB ArxivClusteringP2P
|
226 |
+
config: default
|
227 |
+
split: test
|
228 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
229 |
+
metrics:
|
230 |
+
- type: v_measure
|
231 |
+
value: 52.07508593014336
|
232 |
+
- task:
|
233 |
+
type: Clustering
|
234 |
+
dataset:
|
235 |
+
type: mteb/arxiv-clustering-s2s
|
236 |
+
name: MTEB ArxivClusteringS2S
|
237 |
+
config: default
|
238 |
+
split: test
|
239 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
240 |
+
metrics:
|
241 |
+
- type: v_measure
|
242 |
+
value: 47.381339333240675
|
243 |
+
- task:
|
244 |
+
type: Reranking
|
245 |
+
dataset:
|
246 |
+
type: mteb/askubuntudupquestions-reranking
|
247 |
+
name: MTEB AskUbuntuDupQuestions
|
248 |
+
config: default
|
249 |
+
split: test
|
250 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
251 |
+
metrics:
|
252 |
+
- type: map
|
253 |
+
value: 67.58376647859171
|
254 |
+
- type: mrr
|
255 |
+
value: 80.56885635140483
|
256 |
+
- task:
|
257 |
+
type: STS
|
258 |
+
dataset:
|
259 |
+
type: mteb/biosses-sts
|
260 |
+
name: MTEB BIOSSES
|
261 |
+
config: default
|
262 |
+
split: test
|
263 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
264 |
+
metrics:
|
265 |
+
- type: cos_sim_pearson
|
266 |
+
value: 88.40107280274783
|
267 |
+
- type: cos_sim_spearman
|
268 |
+
value: 86.07003345325681
|
269 |
+
- type: euclidean_pearson
|
270 |
+
value: 87.1726034325395
|
271 |
+
- type: euclidean_spearman
|
272 |
+
value: 86.07003345325681
|
273 |
+
- type: manhattan_pearson
|
274 |
+
value: 87.25660625029772
|
275 |
+
- type: manhattan_spearman
|
276 |
+
value: 86.3808839096893
|
277 |
+
- task:
|
278 |
+
type: Classification
|
279 |
+
dataset:
|
280 |
+
type: mteb/banking77
|
281 |
+
name: MTEB Banking77Classification
|
282 |
+
config: default
|
283 |
+
split: test
|
284 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
285 |
+
metrics:
|
286 |
+
- type: accuracy
|
287 |
+
value: 88.81168831168831
|
288 |
+
- type: f1
|
289 |
+
value: 88.76514496560141
|
290 |
+
- task:
|
291 |
+
type: Clustering
|
292 |
+
dataset:
|
293 |
+
type: mteb/biorxiv-clustering-p2p
|
294 |
+
name: MTEB BiorxivClusteringP2P
|
295 |
+
config: default
|
296 |
+
split: test
|
297 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
298 |
+
metrics:
|
299 |
+
- type: v_measure
|
300 |
+
value: 43.9382520874344
|
301 |
+
- task:
|
302 |
+
type: Clustering
|
303 |
+
dataset:
|
304 |
+
type: mteb/biorxiv-clustering-s2s
|
305 |
+
name: MTEB BiorxivClusteringS2S
|
306 |
+
config: default
|
307 |
+
split: test
|
308 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
309 |
+
metrics:
|
310 |
+
- type: v_measure
|
311 |
+
value: 41.14351847240913
|
312 |
+
- task:
|
313 |
+
type: Retrieval
|
314 |
+
dataset:
|
315 |
+
type: BeIR/cqadupstack
|
316 |
+
name: MTEB CQADupstackRetrieval
|
317 |
+
config: default
|
318 |
+
split: test
|
319 |
+
revision: None
|
320 |
+
metrics:
|
321 |
+
- type: ndcg_at_1
|
322 |
+
value: 34.51166666666667
|
323 |
+
- type: ndcg_at_2
|
324 |
+
value: 38.51591666666667
|
325 |
+
- type: ndcg_at_3
|
326 |
+
value: 40.95083333333333
|
327 |
+
- type: ndcg_at_5
|
328 |
+
value: 43.580666666666666
|
329 |
+
- type: ndcg_at_7
|
330 |
+
value: 45.0625
|
331 |
+
- type: ndcg_at_10
|
332 |
+
value: 46.49083333333333
|
333 |
+
- type: ndcg_at_20
|
334 |
+
value: 48.731333333333325
|
335 |
+
- type: ndcg_at_30
|
336 |
+
value: 49.78666666666667
|
337 |
+
- type: ndcg_at_50
|
338 |
+
value: 50.84049999999999
|
339 |
+
- type: ndcg_at_70
|
340 |
+
value: 51.393750000000004
|
341 |
+
- type: ndcg_at_100
|
342 |
+
value: 51.883333333333326
|
343 |
+
- type: ndcg_at_200
|
344 |
+
value: 52.65225
|
345 |
+
- type: ndcg_at_300
|
346 |
+
value: 52.98241666666669
|
347 |
+
- type: ndcg_at_500
|
348 |
+
value: 53.28541666666668
|
349 |
+
- type: ndcg_at_700
|
350 |
+
value: 53.49241666666668
|
351 |
+
- type: ndcg_at_1000
|
352 |
+
value: 53.63758333333334
|
353 |
+
- type: map_at_1
|
354 |
+
value: 29.10075
|
355 |
+
- type: map_at_2
|
356 |
+
value: 34.636500000000005
|
357 |
+
- type: map_at_3
|
358 |
+
value: 36.92033333333333
|
359 |
+
- type: map_at_5
|
360 |
+
value: 38.81641666666666
|
361 |
+
- type: map_at_7
|
362 |
+
value: 39.635416666666664
|
363 |
+
- type: map_at_10
|
364 |
+
value: 40.294583333333335
|
365 |
+
- type: map_at_20
|
366 |
+
value: 41.07574999999999
|
367 |
+
- type: map_at_30
|
368 |
+
value: 41.333
|
369 |
+
- type: map_at_50
|
370 |
+
value: 41.529333333333334
|
371 |
+
- type: map_at_70
|
372 |
+
value: 41.606833333333334
|
373 |
+
- type: map_at_100
|
374 |
+
value: 41.66224999999999
|
375 |
+
- type: map_at_200
|
376 |
+
value: 41.72691666666666
|
377 |
+
- type: map_at_300
|
378 |
+
value: 41.746583333333334
|
379 |
+
- type: map_at_500
|
380 |
+
value: 41.75983333333333
|
381 |
+
- type: map_at_700
|
382 |
+
value: 41.76558333333333
|
383 |
+
- type: map_at_1000
|
384 |
+
value: 41.769000000000005
|
385 |
+
- type: recall_at_1
|
386 |
+
value: 29.10075
|
387 |
+
- type: recall_at_2
|
388 |
+
value: 39.07658333333333
|
389 |
+
- type: recall_at_3
|
390 |
+
value: 44.93591666666667
|
391 |
+
- type: recall_at_5
|
392 |
+
value: 51.66883333333333
|
393 |
+
- type: recall_at_7
|
394 |
+
value: 55.881000000000014
|
395 |
+
- type: recall_at_10
|
396 |
+
value: 60.34691666666667
|
397 |
+
- type: recall_at_20
|
398 |
+
value: 68.44016666666667
|
399 |
+
- type: recall_at_30
|
400 |
+
value: 72.90766666666667
|
401 |
+
- type: recall_at_50
|
402 |
+
value: 77.843
|
403 |
+
- type: recall_at_70
|
404 |
+
value: 80.70366666666668
|
405 |
+
- type: recall_at_100
|
406 |
+
value: 83.42866666666667
|
407 |
+
- type: recall_at_200
|
408 |
+
value: 88.06816666666668
|
409 |
+
- type: recall_at_300
|
410 |
+
value: 90.249
|
411 |
+
- type: recall_at_500
|
412 |
+
value: 92.37616666666668
|
413 |
+
- type: recall_at_700
|
414 |
+
value: 93.978
|
415 |
+
- type: recall_at_1000
|
416 |
+
value: 95.12791666666666
|
417 |
+
- type: precision_at_1
|
418 |
+
value: 34.51166666666667
|
419 |
+
- type: precision_at_2
|
420 |
+
value: 24.326333333333327
|
421 |
+
- type: precision_at_3
|
422 |
+
value: 19.099249999999998
|
423 |
+
- type: precision_at_5
|
424 |
+
value: 13.672666666666666
|
425 |
+
- type: precision_at_7
|
426 |
+
value: 10.772
|
427 |
+
- type: precision_at_10
|
428 |
+
value: 8.302166666666668
|
429 |
+
- type: precision_at_20
|
430 |
+
value: 4.8960833333333325
|
431 |
+
- type: precision_at_30
|
432 |
+
value: 3.551083333333333
|
433 |
+
- type: precision_at_50
|
434 |
+
value: 2.3386666666666662
|
435 |
+
- type: precision_at_70
|
436 |
+
value: 1.7605833333333334
|
437 |
+
- type: precision_at_100
|
438 |
+
value: 1.2965
|
439 |
+
- type: precision_at_200
|
440 |
+
value: 0.7106666666666668
|
441 |
+
- type: precision_at_300
|
442 |
+
value: 0.4955
|
443 |
+
- type: precision_at_500
|
444 |
+
value: 0.3106666666666667
|
445 |
+
- type: precision_at_700
|
446 |
+
value: 0.22791666666666668
|
447 |
+
- type: precision_at_1000
|
448 |
+
value: 0.1635833333333333
|
449 |
+
- type: mrr_at_1
|
450 |
+
value: 34.51166666666667
|
451 |
+
- type: mrr_at_2
|
452 |
+
value: 39.954249999999995
|
453 |
+
- type: mrr_at_3
|
454 |
+
value: 41.93741666666668
|
455 |
+
- type: mrr_at_5
|
456 |
+
value: 43.487166666666674
|
457 |
+
- type: mrr_at_7
|
458 |
+
value: 44.14983333333333
|
459 |
+
- type: mrr_at_10
|
460 |
+
value: 44.62766666666666
|
461 |
+
- type: mrr_at_20
|
462 |
+
value: 45.15291666666668
|
463 |
+
- type: mrr_at_30
|
464 |
+
value: 45.317
|
465 |
+
- type: mrr_at_50
|
466 |
+
value: 45.42875
|
467 |
+
- type: mrr_at_70
|
468 |
+
value: 45.46966666666667
|
469 |
+
- type: mrr_at_100
|
470 |
+
value: 45.49716666666667
|
471 |
+
- type: mrr_at_200
|
472 |
+
value: 45.525166666666664
|
473 |
+
- type: mrr_at_300
|
474 |
+
value: 45.53233333333335
|
475 |
+
- type: mrr_at_500
|
476 |
+
value: 45.5365
|
477 |
+
- type: mrr_at_700
|
478 |
+
value: 45.538583333333335
|
479 |
+
- type: mrr_at_1000
|
480 |
+
value: 45.539583333333326
|
481 |
+
- task:
|
482 |
+
type: Retrieval
|
483 |
+
dataset:
|
484 |
+
type: climate-fever
|
485 |
+
name: MTEB ClimateFEVER
|
486 |
+
config: default
|
487 |
+
split: test
|
488 |
+
revision: None
|
489 |
+
metrics:
|
490 |
+
- type: ndcg_at_1
|
491 |
+
value: 35.179
|
492 |
+
- type: ndcg_at_2
|
493 |
+
value: 31.243
|
494 |
+
- type: ndcg_at_3
|
495 |
+
value: 30.562
|
496 |
+
- type: ndcg_at_5
|
497 |
+
value: 32.409
|
498 |
+
- type: ndcg_at_7
|
499 |
+
value: 34.525
|
500 |
+
- type: ndcg_at_10
|
501 |
+
value: 36.415
|
502 |
+
- type: ndcg_at_20
|
503 |
+
value: 39.443
|
504 |
+
- type: ndcg_at_30
|
505 |
+
value: 40.796
|
506 |
+
- type: ndcg_at_50
|
507 |
+
value: 42.16
|
508 |
+
- type: ndcg_at_70
|
509 |
+
value: 42.971
|
510 |
+
- type: ndcg_at_100
|
511 |
+
value: 43.691
|
512 |
+
- type: ndcg_at_200
|
513 |
+
value: 45.004
|
514 |
+
- type: ndcg_at_300
|
515 |
+
value: 45.527
|
516 |
+
- type: ndcg_at_500
|
517 |
+
value: 46.072
|
518 |
+
- type: ndcg_at_700
|
519 |
+
value: 46.387
|
520 |
+
- type: ndcg_at_1000
|
521 |
+
value: 46.663
|
522 |
+
- type: map_at_1
|
523 |
+
value: 15.692
|
524 |
+
- type: map_at_2
|
525 |
+
value: 20.116
|
526 |
+
- type: map_at_3
|
527 |
+
value: 22.6
|
528 |
+
- type: map_at_5
|
529 |
+
value: 24.701
|
530 |
+
- type: map_at_7
|
531 |
+
value: 25.934
|
532 |
+
- type: map_at_10
|
533 |
+
value: 26.843
|
534 |
+
- type: map_at_20
|
535 |
+
value: 27.975
|
536 |
+
- type: map_at_30
|
537 |
+
value: 28.372000000000003
|
538 |
+
- type: map_at_50
|
539 |
+
value: 28.671000000000003
|
540 |
+
- type: map_at_70
|
541 |
+
value: 28.803
|
542 |
+
- type: map_at_100
|
543 |
+
value: 28.895
|
544 |
+
- type: map_at_200
|
545 |
+
value: 29.011
|
546 |
+
- type: map_at_300
|
547 |
+
value: 29.042
|
548 |
+
- type: map_at_500
|
549 |
+
value: 29.065
|
550 |
+
- type: map_at_700
|
551 |
+
value: 29.075
|
552 |
+
- type: map_at_1000
|
553 |
+
value: 29.081000000000003
|
554 |
+
- type: recall_at_1
|
555 |
+
value: 15.692
|
556 |
+
- type: recall_at_2
|
557 |
+
value: 22.602
|
558 |
+
- type: recall_at_3
|
559 |
+
value: 27.814
|
560 |
+
- type: recall_at_5
|
561 |
+
value: 33.756
|
562 |
+
- type: recall_at_7
|
563 |
+
value: 38.073
|
564 |
+
- type: recall_at_10
|
565 |
+
value: 42.553000000000004
|
566 |
+
- type: recall_at_20
|
567 |
+
value: 51.121
|
568 |
+
- type: recall_at_30
|
569 |
+
value: 55.523999999999994
|
570 |
+
- type: recall_at_50
|
571 |
+
value: 60.586
|
572 |
+
- type: recall_at_70
|
573 |
+
value: 63.94
|
574 |
+
- type: recall_at_100
|
575 |
+
value: 67.134
|
576 |
+
- type: recall_at_200
|
577 |
+
value: 73.543
|
578 |
+
- type: recall_at_300
|
579 |
+
value: 76.372
|
580 |
+
- type: recall_at_500
|
581 |
+
value: 79.60199999999999
|
582 |
+
- type: recall_at_700
|
583 |
+
value: 81.536
|
584 |
+
- type: recall_at_1000
|
585 |
+
value: 83.37400000000001
|
586 |
+
- type: precision_at_1
|
587 |
+
value: 35.179
|
588 |
+
- type: precision_at_2
|
589 |
+
value: 27.199
|
590 |
+
- type: precision_at_3
|
591 |
+
value: 22.953000000000003
|
592 |
+
- type: precision_at_5
|
593 |
+
value: 17.224999999999998
|
594 |
+
- type: precision_at_7
|
595 |
+
value: 14.238999999999999
|
596 |
+
- type: precision_at_10
|
597 |
+
value: 11.303
|
598 |
+
- type: precision_at_20
|
599 |
+
value: 6.954000000000001
|
600 |
+
- type: precision_at_30
|
601 |
+
value: 5.116
|
602 |
+
- type: precision_at_50
|
603 |
+
value: 3.395
|
604 |
+
- type: precision_at_70
|
605 |
+
value: 2.579
|
606 |
+
- type: precision_at_100
|
607 |
+
value: 1.9109999999999998
|
608 |
+
- type: precision_at_200
|
609 |
+
value: 1.065
|
610 |
+
- type: precision_at_300
|
611 |
+
value: 0.743
|
612 |
+
- type: precision_at_500
|
613 |
+
value: 0.46699999999999997
|
614 |
+
- type: precision_at_700
|
615 |
+
value: 0.344
|
616 |
+
- type: precision_at_1000
|
617 |
+
value: 0.247
|
618 |
+
- type: mrr_at_1
|
619 |
+
value: 35.179
|
620 |
+
- type: mrr_at_2
|
621 |
+
value: 41.792
|
622 |
+
- type: mrr_at_3
|
623 |
+
value: 44.484
|
624 |
+
- type: mrr_at_5
|
625 |
+
value: 46.39
|
626 |
+
- type: mrr_at_7
|
627 |
+
value: 47.125
|
628 |
+
- type: mrr_at_10
|
629 |
+
value: 47.711999999999996
|
630 |
+
- type: mrr_at_20
|
631 |
+
value: 48.214
|
632 |
+
- type: mrr_at_30
|
633 |
+
value: 48.325
|
634 |
+
- type: mrr_at_50
|
635 |
+
value: 48.392
|
636 |
+
- type: mrr_at_70
|
637 |
+
value: 48.418
|
638 |
+
- type: mrr_at_100
|
639 |
+
value: 48.44
|
640 |
+
- type: mrr_at_200
|
641 |
+
value: 48.46
|
642 |
+
- type: mrr_at_300
|
643 |
+
value: 48.461999999999996
|
644 |
+
- type: mrr_at_500
|
645 |
+
value: 48.466
|
646 |
+
- type: mrr_at_700
|
647 |
+
value: 48.466
|
648 |
+
- type: mrr_at_1000
|
649 |
+
value: 48.467
|
650 |
+
- task:
|
651 |
+
type: Retrieval
|
652 |
+
dataset:
|
653 |
+
type: dbpedia-entity
|
654 |
+
name: MTEB DBPedia
|
655 |
+
config: default
|
656 |
+
split: test
|
657 |
+
revision: None
|
658 |
+
metrics:
|
659 |
+
- type: ndcg_at_1
|
660 |
+
value: 62.375
|
661 |
+
- type: ndcg_at_2
|
662 |
+
value: 56.286
|
663 |
+
- type: ndcg_at_3
|
664 |
+
value: 53.665
|
665 |
+
- type: ndcg_at_5
|
666 |
+
value: 51.139
|
667 |
+
- type: ndcg_at_7
|
668 |
+
value: 49.873
|
669 |
+
- type: ndcg_at_10
|
670 |
+
value: 49.056
|
671 |
+
- type: ndcg_at_20
|
672 |
+
value: 48.783
|
673 |
+
- type: ndcg_at_30
|
674 |
+
value: 49.166
|
675 |
+
- type: ndcg_at_50
|
676 |
+
value: 51.141999999999996
|
677 |
+
- type: ndcg_at_70
|
678 |
+
value: 52.774
|
679 |
+
- type: ndcg_at_100
|
680 |
+
value: 54.403
|
681 |
+
- type: ndcg_at_200
|
682 |
+
value: 57.419
|
683 |
+
- type: ndcg_at_300
|
684 |
+
value: 58.778
|
685 |
+
- type: ndcg_at_500
|
686 |
+
value: 60.228
|
687 |
+
- type: ndcg_at_700
|
688 |
+
value: 61.07599999999999
|
689 |
+
- type: ndcg_at_1000
|
690 |
+
value: 61.846000000000004
|
691 |
+
- type: map_at_1
|
692 |
+
value: 10.359
|
693 |
+
- type: map_at_2
|
694 |
+
value: 14.446
|
695 |
+
- type: map_at_3
|
696 |
+
value: 16.689
|
697 |
+
- type: map_at_5
|
698 |
+
value: 20.096
|
699 |
+
- type: map_at_7
|
700 |
+
value: 22.247
|
701 |
+
- type: map_at_10
|
702 |
+
value: 24.468999999999998
|
703 |
+
- type: map_at_20
|
704 |
+
value: 28.938000000000002
|
705 |
+
- type: map_at_30
|
706 |
+
value: 31.134
|
707 |
+
- type: map_at_50
|
708 |
+
value: 33.403
|
709 |
+
- type: map_at_70
|
710 |
+
value: 34.486
|
711 |
+
- type: map_at_100
|
712 |
+
value: 35.337
|
713 |
+
- type: map_at_200
|
714 |
+
value: 36.364999999999995
|
715 |
+
- type: map_at_300
|
716 |
+
value: 36.735
|
717 |
+
- type: map_at_500
|
718 |
+
value: 37.057
|
719 |
+
- type: map_at_700
|
720 |
+
value: 37.225
|
721 |
+
- type: map_at_1000
|
722 |
+
value: 37.379
|
723 |
+
- type: recall_at_1
|
724 |
+
value: 10.359
|
725 |
+
- type: recall_at_2
|
726 |
+
value: 14.945
|
727 |
+
- type: recall_at_3
|
728 |
+
value: 17.694
|
729 |
+
- type: recall_at_5
|
730 |
+
value: 22.677
|
731 |
+
- type: recall_at_7
|
732 |
+
value: 26.131
|
733 |
+
- type: recall_at_10
|
734 |
+
value: 30.053
|
735 |
+
- type: recall_at_20
|
736 |
+
value: 39.518
|
737 |
+
- type: recall_at_30
|
738 |
+
value: 44.925
|
739 |
+
- type: recall_at_50
|
740 |
+
value: 52.154
|
741 |
+
- type: recall_at_70
|
742 |
+
value: 56.729
|
743 |
+
- type: recall_at_100
|
744 |
+
value: 61.18900000000001
|
745 |
+
- type: recall_at_200
|
746 |
+
value: 70.407
|
747 |
+
- type: recall_at_300
|
748 |
+
value: 74.412
|
749 |
+
- type: recall_at_500
|
750 |
+
value: 78.891
|
751 |
+
- type: recall_at_700
|
752 |
+
value: 81.74
|
753 |
+
- type: recall_at_1000
|
754 |
+
value: 84.253
|
755 |
+
- type: precision_at_1
|
756 |
+
value: 75
|
757 |
+
- type: precision_at_2
|
758 |
+
value: 64.125
|
759 |
+
- type: precision_at_3
|
760 |
+
value: 57.833
|
761 |
+
- type: precision_at_5
|
762 |
+
value: 50.24999999999999
|
763 |
+
- type: precision_at_7
|
764 |
+
value: 44.75
|
765 |
+
- type: precision_at_10
|
766 |
+
value: 39.75
|
767 |
+
- type: precision_at_20
|
768 |
+
value: 30.412
|
769 |
+
- type: precision_at_30
|
770 |
+
value: 25.141999999999996
|
771 |
+
- type: precision_at_50
|
772 |
+
value: 19.2
|
773 |
+
- type: precision_at_70
|
774 |
+
value: 15.729000000000001
|
775 |
+
- type: precision_at_100
|
776 |
+
value: 12.552
|
777 |
+
- type: precision_at_200
|
778 |
+
value: 7.866
|
779 |
+
- type: precision_at_300
|
780 |
+
value: 5.9270000000000005
|
781 |
+
- type: precision_at_500
|
782 |
+
value: 4.1129999999999995
|
783 |
+
- type: precision_at_700
|
784 |
+
value: 3.2460000000000004
|
785 |
+
- type: precision_at_1000
|
786 |
+
value: 2.5260000000000002
|
787 |
+
- type: mrr_at_1
|
788 |
+
value: 75
|
789 |
+
- type: mrr_at_2
|
790 |
+
value: 78.625
|
791 |
+
- type: mrr_at_3
|
792 |
+
value: 79.708
|
793 |
+
- type: mrr_at_5
|
794 |
+
value: 80.446
|
795 |
+
- type: mrr_at_7
|
796 |
+
value: 80.862
|
797 |
+
- type: mrr_at_10
|
798 |
+
value: 81.161
|
799 |
+
- type: mrr_at_20
|
800 |
+
value: 81.3
|
801 |
+
- type: mrr_at_30
|
802 |
+
value: 81.348
|
803 |
+
- type: mrr_at_50
|
804 |
+
value: 81.361
|
805 |
+
- type: mrr_at_70
|
806 |
+
value: 81.361
|
807 |
+
- type: mrr_at_100
|
808 |
+
value: 81.361
|
809 |
+
- type: mrr_at_200
|
810 |
+
value: 81.367
|
811 |
+
- type: mrr_at_300
|
812 |
+
value: 81.367
|
813 |
+
- type: mrr_at_500
|
814 |
+
value: 81.368
|
815 |
+
- type: mrr_at_700
|
816 |
+
value: 81.368
|
817 |
+
- type: mrr_at_1000
|
818 |
+
value: 81.368
|
819 |
+
- task:
|
820 |
+
type: Classification
|
821 |
+
dataset:
|
822 |
+
type: mteb/emotion
|
823 |
+
name: MTEB EmotionClassification
|
824 |
+
config: default
|
825 |
+
split: test
|
826 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
827 |
+
metrics:
|
828 |
+
- type: accuracy
|
829 |
+
value: 50.239999999999995
|
830 |
+
- type: f1
|
831 |
+
value: 46.42361822342044
|
832 |
+
- task:
|
833 |
+
type: Retrieval
|
834 |
+
dataset:
|
835 |
+
type: fever
|
836 |
+
name: MTEB FEVER
|
837 |
+
config: default
|
838 |
+
split: test
|
839 |
+
revision: None
|
840 |
+
metrics:
|
841 |
+
- type: ndcg_at_1
|
842 |
+
value: 83.723
|
843 |
+
- type: ndcg_at_2
|
844 |
+
value: 86.777
|
845 |
+
- type: ndcg_at_3
|
846 |
+
value: 87.997
|
847 |
+
- type: ndcg_at_5
|
848 |
+
value: 88.864
|
849 |
+
- type: ndcg_at_7
|
850 |
+
value: 89.143
|
851 |
+
- type: ndcg_at_10
|
852 |
+
value: 89.349
|
853 |
+
- type: ndcg_at_20
|
854 |
+
value: 89.709
|
855 |
+
- type: ndcg_at_30
|
856 |
+
value: 89.82900000000001
|
857 |
+
- type: ndcg_at_50
|
858 |
+
value: 89.923
|
859 |
+
- type: ndcg_at_70
|
860 |
+
value: 89.982
|
861 |
+
- type: ndcg_at_100
|
862 |
+
value: 90.026
|
863 |
+
- type: ndcg_at_200
|
864 |
+
value: 90.10000000000001
|
865 |
+
- type: ndcg_at_300
|
866 |
+
value: 90.12599999999999
|
867 |
+
- type: ndcg_at_500
|
868 |
+
value: 90.17399999999999
|
869 |
+
- type: ndcg_at_700
|
870 |
+
value: 90.19
|
871 |
+
- type: ndcg_at_1000
|
872 |
+
value: 90.208
|
873 |
+
- type: map_at_1
|
874 |
+
value: 77.64999999999999
|
875 |
+
- type: map_at_2
|
876 |
+
value: 83.769
|
877 |
+
- type: map_at_3
|
878 |
+
value: 85.041
|
879 |
+
- type: map_at_5
|
880 |
+
value: 85.736
|
881 |
+
- type: map_at_7
|
882 |
+
value: 85.924
|
883 |
+
- type: map_at_10
|
884 |
+
value: 86.032
|
885 |
+
- type: map_at_20
|
886 |
+
value: 86.177
|
887 |
+
- type: map_at_30
|
888 |
+
value: 86.213
|
889 |
+
- type: map_at_50
|
890 |
+
value: 86.233
|
891 |
+
- type: map_at_70
|
892 |
+
value: 86.24300000000001
|
893 |
+
- type: map_at_100
|
894 |
+
value: 86.249
|
895 |
+
- type: map_at_200
|
896 |
+
value: 86.256
|
897 |
+
- type: map_at_300
|
898 |
+
value: 86.258
|
899 |
+
- type: map_at_500
|
900 |
+
value: 86.26
|
901 |
+
- type: map_at_700
|
902 |
+
value: 86.26
|
903 |
+
- type: map_at_1000
|
904 |
+
value: 86.261
|
905 |
+
- type: recall_at_1
|
906 |
+
value: 77.64999999999999
|
907 |
+
- type: recall_at_2
|
908 |
+
value: 88.53999999999999
|
909 |
+
- type: recall_at_3
|
910 |
+
value: 91.696
|
911 |
+
- type: recall_at_5
|
912 |
+
value: 93.916
|
913 |
+
- type: recall_at_7
|
914 |
+
value: 94.731
|
915 |
+
- type: recall_at_10
|
916 |
+
value: 95.318
|
917 |
+
- type: recall_at_20
|
918 |
+
value: 96.507
|
919 |
+
- type: recall_at_30
|
920 |
+
value: 96.956
|
921 |
+
- type: recall_at_50
|
922 |
+
value: 97.34899999999999
|
923 |
+
- type: recall_at_70
|
924 |
+
value: 97.61
|
925 |
+
- type: recall_at_100
|
926 |
+
value: 97.83
|
927 |
+
- type: recall_at_200
|
928 |
+
value: 98.223
|
929 |
+
- type: recall_at_300
|
930 |
+
value: 98.374
|
931 |
+
- type: recall_at_500
|
932 |
+
value: 98.67899999999999
|
933 |
+
- type: recall_at_700
|
934 |
+
value: 98.787
|
935 |
+
- type: recall_at_1000
|
936 |
+
value: 98.919
|
937 |
+
- type: precision_at_1
|
938 |
+
value: 83.723
|
939 |
+
- type: precision_at_2
|
940 |
+
value: 48.425000000000004
|
941 |
+
- type: precision_at_3
|
942 |
+
value: 33.638
|
943 |
+
- type: precision_at_5
|
944 |
+
value: 20.843
|
945 |
+
- type: precision_at_7
|
946 |
+
value: 15.079
|
947 |
+
- type: precision_at_10
|
948 |
+
value: 10.674999999999999
|
949 |
+
- type: precision_at_20
|
950 |
+
value: 5.457999999999999
|
951 |
+
- type: precision_at_30
|
952 |
+
value: 3.6740000000000004
|
953 |
+
- type: precision_at_50
|
954 |
+
value: 2.2239999999999998
|
955 |
+
- type: precision_at_70
|
956 |
+
value: 1.599
|
957 |
+
- type: precision_at_100
|
958 |
+
value: 1.125
|
959 |
+
- type: precision_at_200
|
960 |
+
value: 0.5680000000000001
|
961 |
+
- type: precision_at_300
|
962 |
+
value: 0.38
|
963 |
+
- type: precision_at_500
|
964 |
+
value: 0.22999999999999998
|
965 |
+
- type: precision_at_700
|
966 |
+
value: 0.165
|
967 |
+
- type: precision_at_1000
|
968 |
+
value: 0.116
|
969 |
+
- type: mrr_at_1
|
970 |
+
value: 83.723
|
971 |
+
- type: mrr_at_2
|
972 |
+
value: 88.794
|
973 |
+
- type: mrr_at_3
|
974 |
+
value: 89.679
|
975 |
+
- type: mrr_at_5
|
976 |
+
value: 90.049
|
977 |
+
- type: mrr_at_7
|
978 |
+
value: 90.129
|
979 |
+
- type: mrr_at_10
|
980 |
+
value: 90.167
|
981 |
+
- type: mrr_at_20
|
982 |
+
value: 90.208
|
983 |
+
- type: mrr_at_30
|
984 |
+
value: 90.214
|
985 |
+
- type: mrr_at_50
|
986 |
+
value: 90.217
|
987 |
+
- type: mrr_at_70
|
988 |
+
value: 90.218
|
989 |
+
- type: mrr_at_100
|
990 |
+
value: 90.21900000000001
|
991 |
+
- type: mrr_at_200
|
992 |
+
value: 90.21900000000001
|
993 |
+
- type: mrr_at_300
|
994 |
+
value: 90.21900000000001
|
995 |
+
- type: mrr_at_500
|
996 |
+
value: 90.21900000000001
|
997 |
+
- type: mrr_at_700
|
998 |
+
value: 90.21900000000001
|
999 |
+
- type: mrr_at_1000
|
1000 |
+
value: 90.21900000000001
|
1001 |
+
- task:
|
1002 |
+
type: Retrieval
|
1003 |
+
dataset:
|
1004 |
+
type: fiqa
|
1005 |
+
name: MTEB FiQA2018
|
1006 |
+
config: default
|
1007 |
+
split: test
|
1008 |
+
revision: None
|
1009 |
+
metrics:
|
1010 |
+
- type: ndcg_at_1
|
1011 |
+
value: 59.721999999999994
|
1012 |
+
- type: ndcg_at_2
|
1013 |
+
value: 56.85
|
1014 |
+
- type: ndcg_at_3
|
1015 |
+
value: 56.462999999999994
|
1016 |
+
- type: ndcg_at_5
|
1017 |
+
value: 57.75599999999999
|
1018 |
+
- type: ndcg_at_7
|
1019 |
+
value: 59.109
|
1020 |
+
- type: ndcg_at_10
|
1021 |
+
value: 60.402
|
1022 |
+
- type: ndcg_at_20
|
1023 |
+
value: 63.071999999999996
|
1024 |
+
- type: ndcg_at_30
|
1025 |
+
value: 64.302
|
1026 |
+
- type: ndcg_at_50
|
1027 |
+
value: 65.619
|
1028 |
+
- type: ndcg_at_70
|
1029 |
+
value: 66.161
|
1030 |
+
- type: ndcg_at_100
|
1031 |
+
value: 66.645
|
1032 |
+
- type: ndcg_at_200
|
1033 |
+
value: 67.353
|
1034 |
+
- type: ndcg_at_300
|
1035 |
+
value: 67.646
|
1036 |
+
- type: ndcg_at_500
|
1037 |
+
value: 67.852
|
1038 |
+
- type: ndcg_at_700
|
1039 |
+
value: 67.974
|
1040 |
+
- type: ndcg_at_1000
|
1041 |
+
value: 68.084
|
1042 |
+
- type: map_at_1
|
1043 |
+
value: 31.56
|
1044 |
+
- type: map_at_2
|
1045 |
+
value: 42.093
|
1046 |
+
- type: map_at_3
|
1047 |
+
value: 46.177
|
1048 |
+
- type: map_at_5
|
1049 |
+
value: 49.78
|
1050 |
+
- type: map_at_7
|
1051 |
+
value: 51.410999999999994
|
1052 |
+
- type: map_at_10
|
1053 |
+
value: 52.524
|
1054 |
+
- type: map_at_20
|
1055 |
+
value: 53.815000000000005
|
1056 |
+
- type: map_at_30
|
1057 |
+
value: 54.201
|
1058 |
+
- type: map_at_50
|
1059 |
+
value: 54.531
|
1060 |
+
- type: map_at_70
|
1061 |
+
value: 54.625
|
1062 |
+
- type: map_at_100
|
1063 |
+
value: 54.686
|
1064 |
+
- type: map_at_200
|
1065 |
+
value: 54.757999999999996
|
1066 |
+
- type: map_at_300
|
1067 |
+
value: 54.776
|
1068 |
+
- type: map_at_500
|
1069 |
+
value: 54.786
|
1070 |
+
- type: map_at_700
|
1071 |
+
value: 54.790000000000006
|
1072 |
+
- type: map_at_1000
|
1073 |
+
value: 54.793000000000006
|
1074 |
+
- type: recall_at_1
|
1075 |
+
value: 31.56
|
1076 |
+
- type: recall_at_2
|
1077 |
+
value: 44.858
|
1078 |
+
- type: recall_at_3
|
1079 |
+
value: 51.11
|
1080 |
+
- type: recall_at_5
|
1081 |
+
value: 58.394
|
1082 |
+
- type: recall_at_7
|
1083 |
+
value: 63.001
|
1084 |
+
- type: recall_at_10
|
1085 |
+
value: 66.81200000000001
|
1086 |
+
- type: recall_at_20
|
1087 |
+
value: 74.901
|
1088 |
+
- type: recall_at_30
|
1089 |
+
value: 79.218
|
1090 |
+
- type: recall_at_50
|
1091 |
+
value: 84.49
|
1092 |
+
- type: recall_at_70
|
1093 |
+
value: 87.003
|
1094 |
+
- type: recall_at_100
|
1095 |
+
value: 89.345
|
1096 |
+
- type: recall_at_200
|
1097 |
+
value: 93.173
|
1098 |
+
- type: recall_at_300
|
1099 |
+
value: 94.906
|
1100 |
+
- type: recall_at_500
|
1101 |
+
value: 96.223
|
1102 |
+
- type: recall_at_700
|
1103 |
+
value: 97.043
|
1104 |
+
- type: recall_at_1000
|
1105 |
+
value: 97.785
|
1106 |
+
- type: precision_at_1
|
1107 |
+
value: 59.721999999999994
|
1108 |
+
- type: precision_at_2
|
1109 |
+
value: 46.682
|
1110 |
+
- type: precision_at_3
|
1111 |
+
value: 37.602999999999994
|
1112 |
+
- type: precision_at_5
|
1113 |
+
value: 27.500000000000004
|
1114 |
+
- type: precision_at_7
|
1115 |
+
value: 21.847
|
1116 |
+
- type: precision_at_10
|
1117 |
+
value: 16.667
|
1118 |
+
- type: precision_at_20
|
1119 |
+
value: 9.545
|
1120 |
+
- type: precision_at_30
|
1121 |
+
value: 6.795
|
1122 |
+
- type: precision_at_50
|
1123 |
+
value: 4.38
|
1124 |
+
- type: precision_at_70
|
1125 |
+
value: 3.221
|
1126 |
+
- type: precision_at_100
|
1127 |
+
value: 2.319
|
1128 |
+
- type: precision_at_200
|
1129 |
+
value: 1.2149999999999999
|
1130 |
+
- type: precision_at_300
|
1131 |
+
value: 0.827
|
1132 |
+
- type: precision_at_500
|
1133 |
+
value: 0.504
|
1134 |
+
- type: precision_at_700
|
1135 |
+
value: 0.364
|
1136 |
+
- type: precision_at_1000
|
1137 |
+
value: 0.257
|
1138 |
+
- type: mrr_at_1
|
1139 |
+
value: 59.721999999999994
|
1140 |
+
- type: mrr_at_2
|
1141 |
+
value: 64.506
|
1142 |
+
- type: mrr_at_3
|
1143 |
+
value: 65.792
|
1144 |
+
- type: mrr_at_5
|
1145 |
+
value: 66.965
|
1146 |
+
- type: mrr_at_7
|
1147 |
+
value: 67.34700000000001
|
1148 |
+
- type: mrr_at_10
|
1149 |
+
value: 67.57
|
1150 |
+
- type: mrr_at_20
|
1151 |
+
value: 67.896
|
1152 |
+
- type: mrr_at_30
|
1153 |
+
value: 68.008
|
1154 |
+
- type: mrr_at_50
|
1155 |
+
value: 68.083
|
1156 |
+
- type: mrr_at_70
|
1157 |
+
value: 68.105
|
1158 |
+
- type: mrr_at_100
|
1159 |
+
value: 68.116
|
1160 |
+
- type: mrr_at_200
|
1161 |
+
value: 68.12700000000001
|
1162 |
+
- type: mrr_at_300
|
1163 |
+
value: 68.13
|
1164 |
+
- type: mrr_at_500
|
1165 |
+
value: 68.132
|
1166 |
+
- type: mrr_at_700
|
1167 |
+
value: 68.133
|
1168 |
+
- type: mrr_at_1000
|
1169 |
+
value: 68.133
|
1170 |
+
- task:
|
1171 |
+
type: Retrieval
|
1172 |
+
dataset:
|
1173 |
+
type: hotpotqa
|
1174 |
+
name: MTEB HotpotQA
|
1175 |
+
config: default
|
1176 |
+
split: test
|
1177 |
+
revision: None
|
1178 |
+
metrics:
|
1179 |
+
- type: ndcg_at_1
|
1180 |
+
value: 81.796
|
1181 |
+
- type: ndcg_at_2
|
1182 |
+
value: 67.999
|
1183 |
+
- type: ndcg_at_3
|
1184 |
+
value: 72.15599999999999
|
1185 |
+
- type: ndcg_at_5
|
1186 |
+
value: 74.99900000000001
|
1187 |
+
- type: ndcg_at_7
|
1188 |
+
value: 76.179
|
1189 |
+
- type: ndcg_at_10
|
1190 |
+
value: 77.022
|
1191 |
+
- type: ndcg_at_20
|
1192 |
+
value: 78.173
|
1193 |
+
- type: ndcg_at_30
|
1194 |
+
value: 78.648
|
1195 |
+
- type: ndcg_at_50
|
1196 |
+
value: 79.104
|
1197 |
+
- type: ndcg_at_70
|
1198 |
+
value: 79.335
|
1199 |
+
- type: ndcg_at_100
|
1200 |
+
value: 79.56
|
1201 |
+
- type: ndcg_at_200
|
1202 |
+
value: 79.911
|
1203 |
+
- type: ndcg_at_300
|
1204 |
+
value: 80.045
|
1205 |
+
- type: ndcg_at_500
|
1206 |
+
value: 80.19500000000001
|
1207 |
+
- type: ndcg_at_700
|
1208 |
+
value: 80.281
|
1209 |
+
- type: ndcg_at_1000
|
1210 |
+
value: 80.35
|
1211 |
+
- type: map_at_1
|
1212 |
+
value: 40.898
|
1213 |
+
- type: map_at_2
|
1214 |
+
value: 62.016000000000005
|
1215 |
+
- type: map_at_3
|
1216 |
+
value: 66.121
|
1217 |
+
- type: map_at_5
|
1218 |
+
value: 68.471
|
1219 |
+
- type: map_at_7
|
1220 |
+
value: 69.261
|
1221 |
+
- type: map_at_10
|
1222 |
+
value: 69.738
|
1223 |
+
- type: map_at_20
|
1224 |
+
value: 70.208
|
1225 |
+
- type: map_at_30
|
1226 |
+
value: 70.343
|
1227 |
+
- type: map_at_50
|
1228 |
+
value: 70.43700000000001
|
1229 |
+
- type: map_at_70
|
1230 |
+
value: 70.47099999999999
|
1231 |
+
- type: map_at_100
|
1232 |
+
value: 70.498
|
1233 |
+
- type: map_at_200
|
1234 |
+
value: 70.526
|
1235 |
+
- type: map_at_300
|
1236 |
+
value: 70.533
|
1237 |
+
- type: map_at_500
|
1238 |
+
value: 70.538
|
1239 |
+
- type: map_at_700
|
1240 |
+
value: 70.541
|
1241 |
+
- type: map_at_1000
|
1242 |
+
value: 70.542
|
1243 |
+
- type: recall_at_1
|
1244 |
+
value: 40.898
|
1245 |
+
- type: recall_at_2
|
1246 |
+
value: 63.964
|
1247 |
+
- type: recall_at_3
|
1248 |
+
value: 70.743
|
1249 |
+
- type: recall_at_5
|
1250 |
+
value: 76.36699999999999
|
1251 |
+
- type: recall_at_7
|
1252 |
+
value: 79.142
|
1253 |
+
- type: recall_at_10
|
1254 |
+
value: 81.404
|
1255 |
+
- type: recall_at_20
|
1256 |
+
value: 85.111
|
1257 |
+
- type: recall_at_30
|
1258 |
+
value: 86.92800000000001
|
1259 |
+
- type: recall_at_50
|
1260 |
+
value: 88.899
|
1261 |
+
- type: recall_at_70
|
1262 |
+
value: 90.01400000000001
|
1263 |
+
- type: recall_at_100
|
1264 |
+
value: 91.19500000000001
|
1265 |
+
- type: recall_at_200
|
1266 |
+
value: 93.234
|
1267 |
+
- type: recall_at_300
|
1268 |
+
value: 94.105
|
1269 |
+
- type: recall_at_500
|
1270 |
+
value: 95.159
|
1271 |
+
- type: recall_at_700
|
1272 |
+
value: 95.8
|
1273 |
+
- type: recall_at_1000
|
1274 |
+
value: 96.34700000000001
|
1275 |
+
- type: precision_at_1
|
1276 |
+
value: 81.796
|
1277 |
+
- type: precision_at_2
|
1278 |
+
value: 63.964
|
1279 |
+
- type: precision_at_3
|
1280 |
+
value: 47.162
|
1281 |
+
- type: precision_at_5
|
1282 |
+
value: 30.547
|
1283 |
+
- type: precision_at_7
|
1284 |
+
value: 22.612
|
1285 |
+
- type: precision_at_10
|
1286 |
+
value: 16.281000000000002
|
1287 |
+
- type: precision_at_20
|
1288 |
+
value: 8.511000000000001
|
1289 |
+
- type: precision_at_30
|
1290 |
+
value: 5.795
|
1291 |
+
- type: precision_at_50
|
1292 |
+
value: 3.556
|
1293 |
+
- type: precision_at_70
|
1294 |
+
value: 2.572
|
1295 |
+
- type: precision_at_100
|
1296 |
+
value: 1.8239999999999998
|
1297 |
+
- type: precision_at_200
|
1298 |
+
value: 0.932
|
1299 |
+
- type: precision_at_300
|
1300 |
+
value: 0.627
|
1301 |
+
- type: precision_at_500
|
1302 |
+
value: 0.381
|
1303 |
+
- type: precision_at_700
|
1304 |
+
value: 0.27399999999999997
|
1305 |
+
- type: precision_at_1000
|
1306 |
+
value: 0.193
|
1307 |
+
- type: mrr_at_1
|
1308 |
+
value: 81.796
|
1309 |
+
- type: mrr_at_2
|
1310 |
+
value: 85.69200000000001
|
1311 |
+
- type: mrr_at_3
|
1312 |
+
value: 86.52
|
1313 |
+
- type: mrr_at_5
|
1314 |
+
value: 86.973
|
1315 |
+
- type: mrr_at_7
|
1316 |
+
value: 87.13300000000001
|
1317 |
+
- type: mrr_at_10
|
1318 |
+
value: 87.208
|
1319 |
+
- type: mrr_at_20
|
1320 |
+
value: 87.303
|
1321 |
+
- type: mrr_at_30
|
1322 |
+
value: 87.32799999999999
|
1323 |
+
- type: mrr_at_50
|
1324 |
+
value: 87.347
|
1325 |
+
- type: mrr_at_70
|
1326 |
+
value: 87.35199999999999
|
1327 |
+
- type: mrr_at_100
|
1328 |
+
value: 87.355
|
1329 |
+
- type: mrr_at_200
|
1330 |
+
value: 87.357
|
1331 |
+
- type: mrr_at_300
|
1332 |
+
value: 87.357
|
1333 |
+
- type: mrr_at_500
|
1334 |
+
value: 87.358
|
1335 |
+
- type: mrr_at_700
|
1336 |
+
value: 87.358
|
1337 |
+
- type: mrr_at_1000
|
1338 |
+
value: 87.358
|
1339 |
+
- task:
|
1340 |
+
type: Classification
|
1341 |
+
dataset:
|
1342 |
+
type: mteb/imdb
|
1343 |
+
name: MTEB ImdbClassification
|
1344 |
+
config: default
|
1345 |
+
split: test
|
1346 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1347 |
+
metrics:
|
1348 |
+
- type: accuracy
|
1349 |
+
value: 94.79200000000002
|
1350 |
+
- type: ap
|
1351 |
+
value: 92.54484356773553
|
1352 |
+
- type: f1
|
1353 |
+
value: 94.78965313682525
|
1354 |
+
- task:
|
1355 |
+
type: Retrieval
|
1356 |
+
dataset:
|
1357 |
+
type: msmarco
|
1358 |
+
name: MTEB MSMARCO
|
1359 |
+
config: default
|
1360 |
+
split: dev
|
1361 |
+
revision: None
|
1362 |
+
metrics:
|
1363 |
+
- type: ndcg_at_1
|
1364 |
+
value: 24.398
|
1365 |
+
- type: ndcg_at_2
|
1366 |
+
value: 31.336000000000002
|
1367 |
+
- type: ndcg_at_3
|
1368 |
+
value: 35.266999999999996
|
1369 |
+
- type: ndcg_at_5
|
1370 |
+
value: 39.356
|
1371 |
+
- type: ndcg_at_7
|
1372 |
+
value: 41.562
|
1373 |
+
- type: ndcg_at_10
|
1374 |
+
value: 43.408
|
1375 |
+
- type: ndcg_at_20
|
1376 |
+
value: 46.107
|
1377 |
+
- type: ndcg_at_30
|
1378 |
+
value: 47.164
|
1379 |
+
- type: ndcg_at_50
|
1380 |
+
value: 48.126000000000005
|
1381 |
+
- type: ndcg_at_70
|
1382 |
+
value: 48.626999999999995
|
1383 |
+
- type: ndcg_at_100
|
1384 |
+
value: 49.043
|
1385 |
+
- type: ndcg_at_200
|
1386 |
+
value: 49.575
|
1387 |
+
- type: ndcg_at_300
|
1388 |
+
value: 49.794
|
1389 |
+
- type: ndcg_at_500
|
1390 |
+
value: 49.942
|
1391 |
+
- type: ndcg_at_700
|
1392 |
+
value: 50.014
|
1393 |
+
- type: ndcg_at_1000
|
1394 |
+
value: 50.077000000000005
|
1395 |
+
- type: map_at_1
|
1396 |
+
value: 23.723
|
1397 |
+
- type: map_at_2
|
1398 |
+
value: 29.593000000000004
|
1399 |
+
- type: map_at_3
|
1400 |
+
value: 32.273
|
1401 |
+
- type: map_at_5
|
1402 |
+
value: 34.587
|
1403 |
+
- type: map_at_7
|
1404 |
+
value: 35.589999999999996
|
1405 |
+
- type: map_at_10
|
1406 |
+
value: 36.296
|
1407 |
+
- type: map_at_20
|
1408 |
+
value: 37.059999999999995
|
1409 |
+
- type: map_at_30
|
1410 |
+
value: 37.265
|
1411 |
+
- type: map_at_50
|
1412 |
+
value: 37.402
|
1413 |
+
- type: map_at_70
|
1414 |
+
value: 37.454
|
1415 |
+
- type: map_at_100
|
1416 |
+
value: 37.486999999999995
|
1417 |
+
- type: map_at_200
|
1418 |
+
value: 37.516
|
1419 |
+
- type: map_at_300
|
1420 |
+
value: 37.524
|
1421 |
+
- type: map_at_500
|
1422 |
+
value: 37.528
|
1423 |
+
- type: map_at_700
|
1424 |
+
value: 37.529
|
1425 |
+
- type: map_at_1000
|
1426 |
+
value: 37.53
|
1427 |
+
- type: recall_at_1
|
1428 |
+
value: 23.723
|
1429 |
+
- type: recall_at_2
|
1430 |
+
value: 35.355
|
1431 |
+
- type: recall_at_3
|
1432 |
+
value: 43.22
|
1433 |
+
- type: recall_at_5
|
1434 |
+
value: 53.025
|
1435 |
+
- type: recall_at_7
|
1436 |
+
value: 59.327
|
1437 |
+
- type: recall_at_10
|
1438 |
+
value: 65.302
|
1439 |
+
- type: recall_at_20
|
1440 |
+
value: 75.765
|
1441 |
+
- type: recall_at_30
|
1442 |
+
value: 80.632
|
1443 |
+
- type: recall_at_50
|
1444 |
+
value: 85.63499999999999
|
1445 |
+
- type: recall_at_70
|
1446 |
+
value: 88.554
|
1447 |
+
- type: recall_at_100
|
1448 |
+
value: 91.16300000000001
|
1449 |
+
- type: recall_at_200
|
1450 |
+
value: 94.85
|
1451 |
+
- type: recall_at_300
|
1452 |
+
value: 96.532
|
1453 |
+
- type: recall_at_500
|
1454 |
+
value: 97.751
|
1455 |
+
- type: recall_at_700
|
1456 |
+
value: 98.383
|
1457 |
+
- type: recall_at_1000
|
1458 |
+
value: 98.97
|
1459 |
+
- type: precision_at_1
|
1460 |
+
value: 24.398
|
1461 |
+
- type: precision_at_2
|
1462 |
+
value: 18.274
|
1463 |
+
- type: precision_at_3
|
1464 |
+
value: 14.951999999999998
|
1465 |
+
- type: precision_at_5
|
1466 |
+
value: 11.052
|
1467 |
+
- type: precision_at_7
|
1468 |
+
value: 8.84
|
1469 |
+
- type: precision_at_10
|
1470 |
+
value: 6.8309999999999995
|
1471 |
+
- type: precision_at_20
|
1472 |
+
value: 3.978
|
1473 |
+
- type: precision_at_30
|
1474 |
+
value: 2.827
|
1475 |
+
- type: precision_at_50
|
1476 |
+
value: 1.807
|
1477 |
+
- type: precision_at_70
|
1478 |
+
value: 1.336
|
1479 |
+
- type: precision_at_100
|
1480 |
+
value: 0.964
|
1481 |
+
- type: precision_at_200
|
1482 |
+
value: 0.502
|
1483 |
+
- type: precision_at_300
|
1484 |
+
value: 0.34099999999999997
|
1485 |
+
- type: precision_at_500
|
1486 |
+
value: 0.208
|
1487 |
+
- type: precision_at_700
|
1488 |
+
value: 0.15
|
1489 |
+
- type: precision_at_1000
|
1490 |
+
value: 0.105
|
1491 |
+
- type: mrr_at_1
|
1492 |
+
value: 24.398
|
1493 |
+
- type: mrr_at_2
|
1494 |
+
value: 30.351
|
1495 |
+
- type: mrr_at_3
|
1496 |
+
value: 33.001000000000005
|
1497 |
+
- type: mrr_at_5
|
1498 |
+
value: 35.228
|
1499 |
+
- type: mrr_at_7
|
1500 |
+
value: 36.223
|
1501 |
+
- type: mrr_at_10
|
1502 |
+
value: 36.903999999999996
|
1503 |
+
- type: mrr_at_20
|
1504 |
+
value: 37.631
|
1505 |
+
- type: mrr_at_30
|
1506 |
+
value: 37.830000000000005
|
1507 |
+
- type: mrr_at_50
|
1508 |
+
value: 37.955
|
1509 |
+
- type: mrr_at_70
|
1510 |
+
value: 38.003
|
1511 |
+
- type: mrr_at_100
|
1512 |
+
value: 38.033
|
1513 |
+
- type: mrr_at_200
|
1514 |
+
value: 38.059
|
1515 |
+
- type: mrr_at_300
|
1516 |
+
value: 38.066
|
1517 |
+
- type: mrr_at_500
|
1518 |
+
value: 38.068999999999996
|
1519 |
+
- type: mrr_at_700
|
1520 |
+
value: 38.07
|
1521 |
+
- type: mrr_at_1000
|
1522 |
+
value: 38.07
|
1523 |
+
- task:
|
1524 |
+
type: Classification
|
1525 |
+
dataset:
|
1526 |
+
type: mteb/mtop_domain
|
1527 |
+
name: MTEB MTOPDomainClassification (en)
|
1528 |
+
config: en
|
1529 |
+
split: test
|
1530 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1531 |
+
metrics:
|
1532 |
+
- type: accuracy
|
1533 |
+
value: 96.35658914728683
|
1534 |
+
- type: f1
|
1535 |
+
value: 96.15039630903114
|
1536 |
+
- task:
|
1537 |
+
type: Classification
|
1538 |
+
dataset:
|
1539 |
+
type: mteb/mtop_intent
|
1540 |
+
name: MTEB MTOPIntentClassification (en)
|
1541 |
+
config: en
|
1542 |
+
split: test
|
1543 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1544 |
+
metrics:
|
1545 |
+
- type: accuracy
|
1546 |
+
value: 86.29730962152303
|
1547 |
+
- type: f1
|
1548 |
+
value: 71.12166316567485
|
1549 |
+
- task:
|
1550 |
+
type: Classification
|
1551 |
+
dataset:
|
1552 |
+
type: mteb/amazon_massive_intent
|
1553 |
+
name: MTEB MassiveIntentClassification (en)
|
1554 |
+
config: en
|
1555 |
+
split: test
|
1556 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1557 |
+
metrics:
|
1558 |
+
- type: accuracy
|
1559 |
+
value: 79.98991257565568
|
1560 |
+
- type: f1
|
1561 |
+
value: 77.41680115095276
|
1562 |
+
- task:
|
1563 |
+
type: Classification
|
1564 |
+
dataset:
|
1565 |
+
type: mteb/amazon_massive_scenario
|
1566 |
+
name: MTEB MassiveScenarioClassification (en)
|
1567 |
+
config: en
|
1568 |
+
split: test
|
1569 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1570 |
+
metrics:
|
1571 |
+
- type: accuracy
|
1572 |
+
value: 82.1990585070612
|
1573 |
+
- type: f1
|
1574 |
+
value: 82.23719179179362
|
1575 |
+
- task:
|
1576 |
+
type: Clustering
|
1577 |
+
dataset:
|
1578 |
+
type: mteb/medrxiv-clustering-p2p
|
1579 |
+
name: MTEB MedrxivClusteringP2P
|
1580 |
+
config: default
|
1581 |
+
split: test
|
1582 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1583 |
+
metrics:
|
1584 |
+
- type: v_measure
|
1585 |
+
value: 40.03019554933584
|
1586 |
+
- task:
|
1587 |
+
type: Clustering
|
1588 |
+
dataset:
|
1589 |
+
type: mteb/medrxiv-clustering-s2s
|
1590 |
+
name: MTEB MedrxivClusteringS2S
|
1591 |
+
config: default
|
1592 |
+
split: test
|
1593 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1594 |
+
metrics:
|
1595 |
+
- type: v_measure
|
1596 |
+
value: 38.999760551497815
|
1597 |
+
- task:
|
1598 |
+
type: Reranking
|
1599 |
+
dataset:
|
1600 |
+
type: mteb/mind_small
|
1601 |
+
name: MTEB MindSmallReranking
|
1602 |
+
config: default
|
1603 |
+
split: test
|
1604 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1605 |
+
metrics:
|
1606 |
+
- type: map
|
1607 |
+
value: 32.72383151953079
|
1608 |
+
- type: mrr
|
1609 |
+
value: 33.93989699030721
|
1610 |
+
- task:
|
1611 |
+
type: Retrieval
|
1612 |
+
dataset:
|
1613 |
+
type: nfcorpus
|
1614 |
+
name: MTEB NFCorpus
|
1615 |
+
config: default
|
1616 |
+
split: test
|
1617 |
+
revision: None
|
1618 |
+
metrics:
|
1619 |
+
- type: ndcg_at_1
|
1620 |
+
value: 51.858000000000004
|
1621 |
+
- type: ndcg_at_2
|
1622 |
+
value: 49.675999999999995
|
1623 |
+
- type: ndcg_at_3
|
1624 |
+
value: 47.519
|
1625 |
+
- type: ndcg_at_5
|
1626 |
+
value: 45.198
|
1627 |
+
- type: ndcg_at_7
|
1628 |
+
value: 43.504
|
1629 |
+
- type: ndcg_at_10
|
1630 |
+
value: 41.88
|
1631 |
+
- type: ndcg_at_20
|
1632 |
+
value: 39.122
|
1633 |
+
- type: ndcg_at_30
|
1634 |
+
value: 37.95
|
1635 |
+
- type: ndcg_at_50
|
1636 |
+
value: 37.602999999999994
|
1637 |
+
- type: ndcg_at_70
|
1638 |
+
value: 37.836
|
1639 |
+
- type: ndcg_at_100
|
1640 |
+
value: 38.493
|
1641 |
+
- type: ndcg_at_200
|
1642 |
+
value: 40.187
|
1643 |
+
- type: ndcg_at_300
|
1644 |
+
value: 41.524
|
1645 |
+
- type: ndcg_at_500
|
1646 |
+
value: 43.657000000000004
|
1647 |
+
- type: ndcg_at_700
|
1648 |
+
value: 45.234
|
1649 |
+
- type: ndcg_at_1000
|
1650 |
+
value: 47.047
|
1651 |
+
- type: map_at_1
|
1652 |
+
value: 6.392
|
1653 |
+
- type: map_at_2
|
1654 |
+
value: 10.113
|
1655 |
+
- type: map_at_3
|
1656 |
+
value: 11.543000000000001
|
1657 |
+
- type: map_at_5
|
1658 |
+
value: 13.729
|
1659 |
+
- type: map_at_7
|
1660 |
+
value: 14.985000000000001
|
1661 |
+
- type: map_at_10
|
1662 |
+
value: 16.217000000000002
|
1663 |
+
- type: map_at_20
|
1664 |
+
value: 18.106
|
1665 |
+
- type: map_at_30
|
1666 |
+
value: 18.878
|
1667 |
+
- type: map_at_50
|
1668 |
+
value: 19.822
|
1669 |
+
- type: map_at_70
|
1670 |
+
value: 20.352999999999998
|
1671 |
+
- type: map_at_100
|
1672 |
+
value: 20.827
|
1673 |
+
- type: map_at_200
|
1674 |
+
value: 21.512
|
1675 |
+
- type: map_at_300
|
1676 |
+
value: 21.826
|
1677 |
+
- type: map_at_500
|
1678 |
+
value: 22.155
|
1679 |
+
- type: map_at_700
|
1680 |
+
value: 22.349
|
1681 |
+
- type: map_at_1000
|
1682 |
+
value: 22.531000000000002
|
1683 |
+
- type: recall_at_1
|
1684 |
+
value: 6.392
|
1685 |
+
- type: recall_at_2
|
1686 |
+
value: 11.215
|
1687 |
+
- type: recall_at_3
|
1688 |
+
value: 13.231000000000002
|
1689 |
+
- type: recall_at_5
|
1690 |
+
value: 16.66
|
1691 |
+
- type: recall_at_7
|
1692 |
+
value: 18.802
|
1693 |
+
- type: recall_at_10
|
1694 |
+
value: 21.185000000000002
|
1695 |
+
- type: recall_at_20
|
1696 |
+
value: 25.35
|
1697 |
+
- type: recall_at_30
|
1698 |
+
value: 27.91
|
1699 |
+
- type: recall_at_50
|
1700 |
+
value: 32.845
|
1701 |
+
- type: recall_at_70
|
1702 |
+
value: 35.789
|
1703 |
+
- type: recall_at_100
|
1704 |
+
value: 39.247
|
1705 |
+
- type: recall_at_200
|
1706 |
+
value: 46.655
|
1707 |
+
- type: recall_at_300
|
1708 |
+
value: 51.43299999999999
|
1709 |
+
- type: recall_at_500
|
1710 |
+
value: 59.472
|
1711 |
+
- type: recall_at_700
|
1712 |
+
value: 64.742
|
1713 |
+
- type: recall_at_1000
|
1714 |
+
value: 70.97099999999999
|
1715 |
+
- type: precision_at_1
|
1716 |
+
value: 53.559999999999995
|
1717 |
+
- type: precision_at_2
|
1718 |
+
value: 48.762
|
1719 |
+
- type: precision_at_3
|
1720 |
+
value: 44.169000000000004
|
1721 |
+
- type: precision_at_5
|
1722 |
+
value: 39.071
|
1723 |
+
- type: precision_at_7
|
1724 |
+
value: 35.161
|
1725 |
+
- type: precision_at_10
|
1726 |
+
value: 31.238
|
1727 |
+
- type: precision_at_20
|
1728 |
+
value: 23.064999999999998
|
1729 |
+
- type: precision_at_30
|
1730 |
+
value: 18.844
|
1731 |
+
- type: precision_at_50
|
1732 |
+
value: 14.601
|
1733 |
+
- type: precision_at_70
|
1734 |
+
value: 12.088000000000001
|
1735 |
+
- type: precision_at_100
|
1736 |
+
value: 9.844999999999999
|
1737 |
+
- type: precision_at_200
|
1738 |
+
value: 6.358
|
1739 |
+
- type: precision_at_300
|
1740 |
+
value: 4.915
|
1741 |
+
- type: precision_at_500
|
1742 |
+
value: 3.531
|
1743 |
+
- type: precision_at_700
|
1744 |
+
value: 2.8649999999999998
|
1745 |
+
- type: precision_at_1000
|
1746 |
+
value: 2.289
|
1747 |
+
- type: mrr_at_1
|
1748 |
+
value: 54.17999999999999
|
1749 |
+
- type: mrr_at_2
|
1750 |
+
value: 59.288
|
1751 |
+
- type: mrr_at_3
|
1752 |
+
value: 60.836
|
1753 |
+
- type: mrr_at_5
|
1754 |
+
value: 62.275999999999996
|
1755 |
+
- type: mrr_at_7
|
1756 |
+
value: 62.688
|
1757 |
+
- type: mrr_at_10
|
1758 |
+
value: 62.865
|
1759 |
+
- type: mrr_at_20
|
1760 |
+
value: 63.11
|
1761 |
+
- type: mrr_at_30
|
1762 |
+
value: 63.193999999999996
|
1763 |
+
- type: mrr_at_50
|
1764 |
+
value: 63.258
|
1765 |
+
- type: mrr_at_70
|
1766 |
+
value: 63.278
|
1767 |
+
- type: mrr_at_100
|
1768 |
+
value: 63.297000000000004
|
1769 |
+
- type: mrr_at_200
|
1770 |
+
value: 63.315999999999995
|
1771 |
+
- type: mrr_at_300
|
1772 |
+
value: 63.318
|
1773 |
+
- type: mrr_at_500
|
1774 |
+
value: 63.32299999999999
|
1775 |
+
- type: mrr_at_700
|
1776 |
+
value: 63.324000000000005
|
1777 |
+
- type: mrr_at_1000
|
1778 |
+
value: 63.324999999999996
|
1779 |
+
- task:
|
1780 |
+
type: Retrieval
|
1781 |
+
dataset:
|
1782 |
+
type: nq
|
1783 |
+
name: MTEB NQ
|
1784 |
+
config: default
|
1785 |
+
split: test
|
1786 |
+
revision: None
|
1787 |
+
metrics:
|
1788 |
+
- type: ndcg_at_1
|
1789 |
+
value: 50.897999999999996
|
1790 |
+
- type: ndcg_at_2
|
1791 |
+
value: 59.126
|
1792 |
+
- type: ndcg_at_3
|
1793 |
+
value: 63.093999999999994
|
1794 |
+
- type: ndcg_at_5
|
1795 |
+
value: 67.197
|
1796 |
+
- type: ndcg_at_7
|
1797 |
+
value: 68.719
|
1798 |
+
- type: ndcg_at_10
|
1799 |
+
value: 69.915
|
1800 |
+
- type: ndcg_at_20
|
1801 |
+
value: 71.229
|
1802 |
+
- type: ndcg_at_30
|
1803 |
+
value: 71.667
|
1804 |
+
- type: ndcg_at_50
|
1805 |
+
value: 71.98
|
1806 |
+
- type: ndcg_at_70
|
1807 |
+
value: 72.127
|
1808 |
+
- type: ndcg_at_100
|
1809 |
+
value: 72.217
|
1810 |
+
- type: ndcg_at_200
|
1811 |
+
value: 72.319
|
1812 |
+
- type: ndcg_at_300
|
1813 |
+
value: 72.347
|
1814 |
+
- type: ndcg_at_500
|
1815 |
+
value: 72.37
|
1816 |
+
- type: ndcg_at_700
|
1817 |
+
value: 72.379
|
1818 |
+
- type: ndcg_at_1000
|
1819 |
+
value: 72.381
|
1820 |
+
- type: map_at_1
|
1821 |
+
value: 45.297
|
1822 |
+
- type: map_at_2
|
1823 |
+
value: 55.596000000000004
|
1824 |
+
- type: map_at_3
|
1825 |
+
value: 58.724
|
1826 |
+
- type: map_at_5
|
1827 |
+
value: 61.387
|
1828 |
+
- type: map_at_7
|
1829 |
+
value: 62.173
|
1830 |
+
- type: map_at_10
|
1831 |
+
value: 62.69
|
1832 |
+
- type: map_at_20
|
1833 |
+
value: 63.125
|
1834 |
+
- type: map_at_30
|
1835 |
+
value: 63.223
|
1836 |
+
- type: map_at_50
|
1837 |
+
value: 63.27700000000001
|
1838 |
+
- type: map_at_70
|
1839 |
+
value: 63.295
|
1840 |
+
- type: map_at_100
|
1841 |
+
value: 63.303
|
1842 |
+
- type: map_at_200
|
1843 |
+
value: 63.31
|
1844 |
+
- type: map_at_300
|
1845 |
+
value: 63.31099999999999
|
1846 |
+
- type: map_at_500
|
1847 |
+
value: 63.312000000000005
|
1848 |
+
- type: map_at_700
|
1849 |
+
value: 63.312000000000005
|
1850 |
+
- type: map_at_1000
|
1851 |
+
value: 63.312000000000005
|
1852 |
+
- type: recall_at_1
|
1853 |
+
value: 45.297
|
1854 |
+
- type: recall_at_2
|
1855 |
+
value: 63.866
|
1856 |
+
- type: recall_at_3
|
1857 |
+
value: 71.898
|
1858 |
+
- type: recall_at_5
|
1859 |
+
value: 81.16600000000001
|
1860 |
+
- type: recall_at_7
|
1861 |
+
value: 85.301
|
1862 |
+
- type: recall_at_10
|
1863 |
+
value: 88.94800000000001
|
1864 |
+
- type: recall_at_20
|
1865 |
+
value: 93.719
|
1866 |
+
- type: recall_at_30
|
1867 |
+
value: 95.628
|
1868 |
+
- type: recall_at_50
|
1869 |
+
value: 97.14699999999999
|
1870 |
+
- type: recall_at_70
|
1871 |
+
value: 97.955
|
1872 |
+
- type: recall_at_100
|
1873 |
+
value: 98.48599999999999
|
1874 |
+
- type: recall_at_200
|
1875 |
+
value: 99.157
|
1876 |
+
- type: recall_at_300
|
1877 |
+
value: 99.355
|
1878 |
+
- type: recall_at_500
|
1879 |
+
value: 99.53699999999999
|
1880 |
+
- type: recall_at_700
|
1881 |
+
value: 99.62299999999999
|
1882 |
+
- type: recall_at_1000
|
1883 |
+
value: 99.638
|
1884 |
+
- type: precision_at_1
|
1885 |
+
value: 50.897999999999996
|
1886 |
+
- type: precision_at_2
|
1887 |
+
value: 36.703
|
1888 |
+
- type: precision_at_3
|
1889 |
+
value: 27.926000000000002
|
1890 |
+
- type: precision_at_5
|
1891 |
+
value: 19.276
|
1892 |
+
- type: precision_at_7
|
1893 |
+
value: 14.533999999999999
|
1894 |
+
- type: precision_at_10
|
1895 |
+
value: 10.678
|
1896 |
+
- type: precision_at_20
|
1897 |
+
value: 5.663
|
1898 |
+
- type: precision_at_30
|
1899 |
+
value: 3.8600000000000003
|
1900 |
+
- type: precision_at_50
|
1901 |
+
value: 2.358
|
1902 |
+
- type: precision_at_70
|
1903 |
+
value: 1.7000000000000002
|
1904 |
+
- type: precision_at_100
|
1905 |
+
value: 1.198
|
1906 |
+
- type: precision_at_200
|
1907 |
+
value: 0.603
|
1908 |
+
- type: precision_at_300
|
1909 |
+
value: 0.40299999999999997
|
1910 |
+
- type: precision_at_500
|
1911 |
+
value: 0.242
|
1912 |
+
- type: precision_at_700
|
1913 |
+
value: 0.173
|
1914 |
+
- type: precision_at_1000
|
1915 |
+
value: 0.121
|
1916 |
+
- type: mrr_at_1
|
1917 |
+
value: 50.897999999999996
|
1918 |
+
- type: mrr_at_2
|
1919 |
+
value: 59.994
|
1920 |
+
- type: mrr_at_3
|
1921 |
+
value: 62.553000000000004
|
1922 |
+
- type: mrr_at_5
|
1923 |
+
value: 64.307
|
1924 |
+
- type: mrr_at_7
|
1925 |
+
value: 64.864
|
1926 |
+
- type: mrr_at_10
|
1927 |
+
value: 65.22200000000001
|
1928 |
+
- type: mrr_at_20
|
1929 |
+
value: 65.499
|
1930 |
+
- type: mrr_at_30
|
1931 |
+
value: 65.561
|
1932 |
+
- type: mrr_at_50
|
1933 |
+
value: 65.592
|
1934 |
+
- type: mrr_at_70
|
1935 |
+
value: 65.602
|
1936 |
+
- type: mrr_at_100
|
1937 |
+
value: 65.607
|
1938 |
+
- type: mrr_at_200
|
1939 |
+
value: 65.61099999999999
|
1940 |
+
- type: mrr_at_300
|
1941 |
+
value: 65.61200000000001
|
1942 |
+
- type: mrr_at_500
|
1943 |
+
value: 65.61200000000001
|
1944 |
+
- type: mrr_at_700
|
1945 |
+
value: 65.61200000000001
|
1946 |
+
- type: mrr_at_1000
|
1947 |
+
value: 65.61200000000001
|
1948 |
+
- task:
|
1949 |
+
type: Retrieval
|
1950 |
+
dataset:
|
1951 |
+
type: quora
|
1952 |
+
name: MTEB QuoraRetrieval
|
1953 |
+
config: default
|
1954 |
+
split: test
|
1955 |
+
revision: None
|
1956 |
+
metrics:
|
1957 |
+
- type: ndcg_at_1
|
1958 |
+
value: 82.96
|
1959 |
+
- type: ndcg_at_2
|
1960 |
+
value: 85.614
|
1961 |
+
- type: ndcg_at_3
|
1962 |
+
value: 87.19
|
1963 |
+
- type: ndcg_at_5
|
1964 |
+
value: 88.654
|
1965 |
+
- type: ndcg_at_7
|
1966 |
+
value: 89.287
|
1967 |
+
- type: ndcg_at_10
|
1968 |
+
value: 89.785
|
1969 |
+
- type: ndcg_at_20
|
1970 |
+
value: 90.384
|
1971 |
+
- type: ndcg_at_30
|
1972 |
+
value: 90.589
|
1973 |
+
- type: ndcg_at_50
|
1974 |
+
value: 90.738
|
1975 |
+
- type: ndcg_at_70
|
1976 |
+
value: 90.789
|
1977 |
+
- type: ndcg_at_100
|
1978 |
+
value: 90.824
|
1979 |
+
- type: ndcg_at_200
|
1980 |
+
value: 90.869
|
1981 |
+
- type: ndcg_at_300
|
1982 |
+
value: 90.881
|
1983 |
+
- type: ndcg_at_500
|
1984 |
+
value: 90.886
|
1985 |
+
- type: ndcg_at_700
|
1986 |
+
value: 90.889
|
1987 |
+
- type: ndcg_at_1000
|
1988 |
+
value: 90.889
|
1989 |
+
- type: map_at_1
|
1990 |
+
value: 72.152
|
1991 |
+
- type: map_at_2
|
1992 |
+
value: 80.818
|
1993 |
+
- type: map_at_3
|
1994 |
+
value: 83.462
|
1995 |
+
- type: map_at_5
|
1996 |
+
value: 85.286
|
1997 |
+
- type: map_at_7
|
1998 |
+
value: 85.921
|
1999 |
+
- type: map_at_10
|
2000 |
+
value: 86.334
|
2001 |
+
- type: map_at_20
|
2002 |
+
value: 86.737
|
2003 |
+
- type: map_at_30
|
2004 |
+
value: 86.847
|
2005 |
+
- type: map_at_50
|
2006 |
+
value: 86.911
|
2007 |
+
- type: map_at_70
|
2008 |
+
value: 86.932
|
2009 |
+
- type: map_at_100
|
2010 |
+
value: 86.943
|
2011 |
+
- type: map_at_200
|
2012 |
+
value: 86.953
|
2013 |
+
- type: map_at_300
|
2014 |
+
value: 86.955
|
2015 |
+
- type: map_at_500
|
2016 |
+
value: 86.956
|
2017 |
+
- type: map_at_700
|
2018 |
+
value: 86.956
|
2019 |
+
- type: map_at_1000
|
2020 |
+
value: 86.956
|
2021 |
+
- type: recall_at_1
|
2022 |
+
value: 72.152
|
2023 |
+
- type: recall_at_2
|
2024 |
+
value: 84.129
|
2025 |
+
- type: recall_at_3
|
2026 |
+
value: 88.87
|
2027 |
+
- type: recall_at_5
|
2028 |
+
value: 93.067
|
2029 |
+
- type: recall_at_7
|
2030 |
+
value: 94.882
|
2031 |
+
- type: recall_at_10
|
2032 |
+
value: 96.353
|
2033 |
+
- type: recall_at_20
|
2034 |
+
value: 98.26700000000001
|
2035 |
+
- type: recall_at_30
|
2036 |
+
value: 98.92999999999999
|
2037 |
+
- type: recall_at_50
|
2038 |
+
value: 99.441
|
2039 |
+
- type: recall_at_70
|
2040 |
+
value: 99.619
|
2041 |
+
- type: recall_at_100
|
2042 |
+
value: 99.748
|
2043 |
+
- type: recall_at_200
|
2044 |
+
value: 99.911
|
2045 |
+
- type: recall_at_300
|
2046 |
+
value: 99.956
|
2047 |
+
- type: recall_at_500
|
2048 |
+
value: 99.98
|
2049 |
+
- type: recall_at_700
|
2050 |
+
value: 99.991
|
2051 |
+
- type: recall_at_1000
|
2052 |
+
value: 99.996
|
2053 |
+
- type: precision_at_1
|
2054 |
+
value: 82.96
|
2055 |
+
- type: precision_at_2
|
2056 |
+
value: 52.175000000000004
|
2057 |
+
- type: precision_at_3
|
2058 |
+
value: 38.223
|
2059 |
+
- type: precision_at_5
|
2060 |
+
value: 25.056
|
2061 |
+
- type: precision_at_7
|
2062 |
+
value: 18.717
|
2063 |
+
- type: precision_at_10
|
2064 |
+
value: 13.614999999999998
|
2065 |
+
- type: precision_at_20
|
2066 |
+
value: 7.208
|
2067 |
+
- type: precision_at_30
|
2068 |
+
value: 4.928
|
2069 |
+
- type: precision_at_50
|
2070 |
+
value: 3.024
|
2071 |
+
- type: precision_at_70
|
2072 |
+
value: 2.183
|
2073 |
+
- type: precision_at_100
|
2074 |
+
value: 1.54
|
2075 |
+
- type: precision_at_200
|
2076 |
+
value: 0.779
|
2077 |
+
- type: precision_at_300
|
2078 |
+
value: 0.521
|
2079 |
+
- type: precision_at_500
|
2080 |
+
value: 0.313
|
2081 |
+
- type: precision_at_700
|
2082 |
+
value: 0.22399999999999998
|
2083 |
+
- type: precision_at_1000
|
2084 |
+
value: 0.157
|
2085 |
+
- type: mrr_at_1
|
2086 |
+
value: 82.96
|
2087 |
+
- type: mrr_at_2
|
2088 |
+
value: 87.005
|
2089 |
+
- type: mrr_at_3
|
2090 |
+
value: 88.07199999999999
|
2091 |
+
- type: mrr_at_5
|
2092 |
+
value: 88.634
|
2093 |
+
- type: mrr_at_7
|
2094 |
+
value: 88.793
|
2095 |
+
- type: mrr_at_10
|
2096 |
+
value: 88.87899999999999
|
2097 |
+
- type: mrr_at_20
|
2098 |
+
value: 88.94999999999999
|
2099 |
+
- type: mrr_at_30
|
2100 |
+
value: 88.96
|
2101 |
+
- type: mrr_at_50
|
2102 |
+
value: 88.965
|
2103 |
+
- type: mrr_at_70
|
2104 |
+
value: 88.966
|
2105 |
+
- type: mrr_at_100
|
2106 |
+
value: 88.967
|
2107 |
+
- type: mrr_at_200
|
2108 |
+
value: 88.967
|
2109 |
+
- type: mrr_at_300
|
2110 |
+
value: 88.967
|
2111 |
+
- type: mrr_at_500
|
2112 |
+
value: 88.967
|
2113 |
+
- type: mrr_at_700
|
2114 |
+
value: 88.967
|
2115 |
+
- type: mrr_at_1000
|
2116 |
+
value: 88.967
|
2117 |
+
- task:
|
2118 |
+
type: Clustering
|
2119 |
+
dataset:
|
2120 |
+
type: mteb/reddit-clustering
|
2121 |
+
name: MTEB RedditClustering
|
2122 |
+
config: default
|
2123 |
+
split: test
|
2124 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
2125 |
+
metrics:
|
2126 |
+
- type: v_measure
|
2127 |
+
value: 59.90388554491155
|
2128 |
+
- task:
|
2129 |
+
type: Clustering
|
2130 |
+
dataset:
|
2131 |
+
type: mteb/reddit-clustering-p2p
|
2132 |
+
name: MTEB RedditClusteringP2P
|
2133 |
+
config: default
|
2134 |
+
split: test
|
2135 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
2136 |
+
metrics:
|
2137 |
+
- type: v_measure
|
2138 |
+
value: 67.64232539036783
|
2139 |
+
- task:
|
2140 |
+
type: Retrieval
|
2141 |
+
dataset:
|
2142 |
+
type: scidocs
|
2143 |
+
name: MTEB SCIDOCS
|
2144 |
+
config: default
|
2145 |
+
split: test
|
2146 |
+
revision: None
|
2147 |
+
metrics:
|
2148 |
+
- type: ndcg_at_1
|
2149 |
+
value: 22.6
|
2150 |
+
- type: ndcg_at_2
|
2151 |
+
value: 20.355999999999998
|
2152 |
+
- type: ndcg_at_3
|
2153 |
+
value: 18.536
|
2154 |
+
- type: ndcg_at_5
|
2155 |
+
value: 16.523
|
2156 |
+
- type: ndcg_at_7
|
2157 |
+
value: 17.979
|
2158 |
+
- type: ndcg_at_10
|
2159 |
+
value: 19.908
|
2160 |
+
- type: ndcg_at_20
|
2161 |
+
value: 22.887
|
2162 |
+
- type: ndcg_at_30
|
2163 |
+
value: 24.43
|
2164 |
+
- type: ndcg_at_50
|
2165 |
+
value: 25.959
|
2166 |
+
- type: ndcg_at_70
|
2167 |
+
value: 26.989
|
2168 |
+
- type: ndcg_at_100
|
2169 |
+
value: 27.977
|
2170 |
+
- type: ndcg_at_200
|
2171 |
+
value: 29.831000000000003
|
2172 |
+
- type: ndcg_at_300
|
2173 |
+
value: 30.787
|
2174 |
+
- type: ndcg_at_500
|
2175 |
+
value: 31.974999999999998
|
2176 |
+
- type: ndcg_at_700
|
2177 |
+
value: 32.554
|
2178 |
+
- type: ndcg_at_1000
|
2179 |
+
value: 33.277
|
2180 |
+
- type: map_at_1
|
2181 |
+
value: 4.593
|
2182 |
+
- type: map_at_2
|
2183 |
+
value: 6.923
|
2184 |
+
- type: map_at_3
|
2185 |
+
value: 8.3
|
2186 |
+
- type: map_at_5
|
2187 |
+
value: 10.072000000000001
|
2188 |
+
- type: map_at_7
|
2189 |
+
value: 10.782
|
2190 |
+
- type: map_at_10
|
2191 |
+
value: 11.72
|
2192 |
+
- type: map_at_20
|
2193 |
+
value: 12.838
|
2194 |
+
- type: map_at_30
|
2195 |
+
value: 13.257
|
2196 |
+
- type: map_at_50
|
2197 |
+
value: 13.569
|
2198 |
+
- type: map_at_70
|
2199 |
+
value: 13.733
|
2200 |
+
- type: map_at_100
|
2201 |
+
value: 13.858999999999998
|
2202 |
+
- type: map_at_200
|
2203 |
+
value: 14.018
|
2204 |
+
- type: map_at_300
|
2205 |
+
value: 14.072999999999999
|
2206 |
+
- type: map_at_500
|
2207 |
+
value: 14.126
|
2208 |
+
- type: map_at_700
|
2209 |
+
value: 14.145
|
2210 |
+
- type: map_at_1000
|
2211 |
+
value: 14.161999999999999
|
2212 |
+
- type: recall_at_1
|
2213 |
+
value: 4.593
|
2214 |
+
- type: recall_at_2
|
2215 |
+
value: 7.997999999999999
|
2216 |
+
- type: recall_at_3
|
2217 |
+
value: 10.563
|
2218 |
+
- type: recall_at_5
|
2219 |
+
value: 14.907
|
2220 |
+
- type: recall_at_7
|
2221 |
+
value: 17.4
|
2222 |
+
- type: recall_at_10
|
2223 |
+
value: 21.18
|
2224 |
+
- type: recall_at_20
|
2225 |
+
value: 28.144999999999996
|
2226 |
+
- type: recall_at_30
|
2227 |
+
value: 32.462
|
2228 |
+
- type: recall_at_50
|
2229 |
+
value: 37.267
|
2230 |
+
- type: recall_at_70
|
2231 |
+
value: 40.875
|
2232 |
+
- type: recall_at_100
|
2233 |
+
value: 44.641999999999996
|
2234 |
+
- type: recall_at_200
|
2235 |
+
value: 52.573
|
2236 |
+
- type: recall_at_300
|
2237 |
+
value: 57.089999999999996
|
2238 |
+
- type: recall_at_500
|
2239 |
+
value: 63.14300000000001
|
2240 |
+
- type: recall_at_700
|
2241 |
+
value: 66.313
|
2242 |
+
- type: recall_at_1000
|
2243 |
+
value: 70.458
|
2244 |
+
- type: precision_at_1
|
2245 |
+
value: 22.6
|
2246 |
+
- type: precision_at_2
|
2247 |
+
value: 19.7
|
2248 |
+
- type: precision_at_3
|
2249 |
+
value: 17.333000000000002
|
2250 |
+
- type: precision_at_5
|
2251 |
+
value: 14.680000000000001
|
2252 |
+
- type: precision_at_7
|
2253 |
+
value: 12.243
|
2254 |
+
- type: precision_at_10
|
2255 |
+
value: 10.440000000000001
|
2256 |
+
- type: precision_at_20
|
2257 |
+
value: 6.944999999999999
|
2258 |
+
- type: precision_at_30
|
2259 |
+
value: 5.333
|
2260 |
+
- type: precision_at_50
|
2261 |
+
value: 3.678
|
2262 |
+
- type: precision_at_70
|
2263 |
+
value: 2.881
|
2264 |
+
- type: precision_at_100
|
2265 |
+
value: 2.2030000000000003
|
2266 |
+
- type: precision_at_200
|
2267 |
+
value: 1.295
|
2268 |
+
- type: precision_at_300
|
2269 |
+
value: 0.9369999999999999
|
2270 |
+
- type: precision_at_500
|
2271 |
+
value: 0.622
|
2272 |
+
- type: precision_at_700
|
2273 |
+
value: 0.466
|
2274 |
+
- type: precision_at_1000
|
2275 |
+
value: 0.347
|
2276 |
+
- type: mrr_at_1
|
2277 |
+
value: 22.6
|
2278 |
+
- type: mrr_at_2
|
2279 |
+
value: 27.900000000000002
|
2280 |
+
- type: mrr_at_3
|
2281 |
+
value: 30.067
|
2282 |
+
- type: mrr_at_5
|
2283 |
+
value: 32.207
|
2284 |
+
- type: mrr_at_7
|
2285 |
+
value: 33.004
|
2286 |
+
- type: mrr_at_10
|
2287 |
+
value: 33.596
|
2288 |
+
- type: mrr_at_20
|
2289 |
+
value: 34.268
|
2290 |
+
- type: mrr_at_30
|
2291 |
+
value: 34.492
|
2292 |
+
- type: mrr_at_50
|
2293 |
+
value: 34.628
|
2294 |
+
- type: mrr_at_70
|
2295 |
+
value: 34.681
|
2296 |
+
- type: mrr_at_100
|
2297 |
+
value: 34.717
|
2298 |
+
- type: mrr_at_200
|
2299 |
+
value: 34.757
|
2300 |
+
- type: mrr_at_300
|
2301 |
+
value: 34.768
|
2302 |
+
- type: mrr_at_500
|
2303 |
+
value: 34.772
|
2304 |
+
- type: mrr_at_700
|
2305 |
+
value: 34.774
|
2306 |
+
- type: mrr_at_1000
|
2307 |
+
value: 34.775
|
2308 |
+
- task:
|
2309 |
+
type: STS
|
2310 |
+
dataset:
|
2311 |
+
type: mteb/sickr-sts
|
2312 |
+
name: MTEB SICK-R
|
2313 |
+
config: default
|
2314 |
+
split: test
|
2315 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
2316 |
+
metrics:
|
2317 |
+
- type: cos_sim_pearson
|
2318 |
+
value: 86.90122745229677
|
2319 |
+
- type: cos_sim_spearman
|
2320 |
+
value: 82.92294737327579
|
2321 |
+
- type: euclidean_pearson
|
2322 |
+
value: 84.08979655773187
|
2323 |
+
- type: euclidean_spearman
|
2324 |
+
value: 82.92294657285412
|
2325 |
+
- type: manhattan_pearson
|
2326 |
+
value: 84.09347480531832
|
2327 |
+
- type: manhattan_spearman
|
2328 |
+
value: 82.91564613948087
|
2329 |
+
- task:
|
2330 |
+
type: STS
|
2331 |
+
dataset:
|
2332 |
+
type: mteb/sts12-sts
|
2333 |
+
name: MTEB STS12
|
2334 |
+
config: default
|
2335 |
+
split: test
|
2336 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
2337 |
+
metrics:
|
2338 |
+
- type: cos_sim_pearson
|
2339 |
+
value: 87.01218713698583
|
2340 |
+
- type: cos_sim_spearman
|
2341 |
+
value: 79.46865215168464
|
2342 |
+
- type: euclidean_pearson
|
2343 |
+
value: 83.22621889891909
|
2344 |
+
- type: euclidean_spearman
|
2345 |
+
value: 79.46853821709514
|
2346 |
+
- type: manhattan_pearson
|
2347 |
+
value: 83.69962580788805
|
2348 |
+
- type: manhattan_spearman
|
2349 |
+
value: 79.9561593356932
|
2350 |
+
- task:
|
2351 |
+
type: STS
|
2352 |
+
dataset:
|
2353 |
+
type: mteb/sts13-sts
|
2354 |
+
name: MTEB STS13
|
2355 |
+
config: default
|
2356 |
+
split: test
|
2357 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
2358 |
+
metrics:
|
2359 |
+
- type: cos_sim_pearson
|
2360 |
+
value: 88.98438696342964
|
2361 |
+
- type: cos_sim_spearman
|
2362 |
+
value: 89.15419511870839
|
2363 |
+
- type: euclidean_pearson
|
2364 |
+
value: 88.49646141802894
|
2365 |
+
- type: euclidean_spearman
|
2366 |
+
value: 89.15419503946019
|
2367 |
+
- type: manhattan_pearson
|
2368 |
+
value: 88.6420585616327
|
2369 |
+
- type: manhattan_spearman
|
2370 |
+
value: 89.42648950757743
|
2371 |
+
- task:
|
2372 |
+
type: STS
|
2373 |
+
dataset:
|
2374 |
+
type: mteb/sts14-sts
|
2375 |
+
name: MTEB STS14
|
2376 |
+
config: default
|
2377 |
+
split: test
|
2378 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2379 |
+
metrics:
|
2380 |
+
- type: cos_sim_pearson
|
2381 |
+
value: 87.30772547759544
|
2382 |
+
- type: cos_sim_spearman
|
2383 |
+
value: 84.93199878424691
|
2384 |
+
- type: euclidean_pearson
|
2385 |
+
value: 86.16266630395455
|
2386 |
+
- type: euclidean_spearman
|
2387 |
+
value: 84.93198798543634
|
2388 |
+
- type: manhattan_pearson
|
2389 |
+
value: 86.14285723189803
|
2390 |
+
- type: manhattan_spearman
|
2391 |
+
value: 85.0361672522687
|
2392 |
+
- task:
|
2393 |
+
type: STS
|
2394 |
+
dataset:
|
2395 |
+
type: mteb/sts15-sts
|
2396 |
+
name: MTEB STS15
|
2397 |
+
config: default
|
2398 |
+
split: test
|
2399 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2400 |
+
metrics:
|
2401 |
+
- type: cos_sim_pearson
|
2402 |
+
value: 90.21342071197127
|
2403 |
+
- type: cos_sim_spearman
|
2404 |
+
value: 90.7407512744838
|
2405 |
+
- type: euclidean_pearson
|
2406 |
+
value: 90.1517933113061
|
2407 |
+
- type: euclidean_spearman
|
2408 |
+
value: 90.74075125431919
|
2409 |
+
- type: manhattan_pearson
|
2410 |
+
value: 90.17963034676193
|
2411 |
+
- type: manhattan_spearman
|
2412 |
+
value: 90.88999275865135
|
2413 |
+
- task:
|
2414 |
+
type: STS
|
2415 |
+
dataset:
|
2416 |
+
type: mteb/sts16-sts
|
2417 |
+
name: MTEB STS16
|
2418 |
+
config: default
|
2419 |
+
split: test
|
2420 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2421 |
+
metrics:
|
2422 |
+
- type: cos_sim_pearson
|
2423 |
+
value: 86.82518054100498
|
2424 |
+
- type: cos_sim_spearman
|
2425 |
+
value: 87.81570533154735
|
2426 |
+
- type: euclidean_pearson
|
2427 |
+
value: 86.91684561573618
|
2428 |
+
- type: euclidean_spearman
|
2429 |
+
value: 87.81570533154735
|
2430 |
+
- type: manhattan_pearson
|
2431 |
+
value: 86.98311935744032
|
2432 |
+
- type: manhattan_spearman
|
2433 |
+
value: 87.9594667151966
|
2434 |
+
- task:
|
2435 |
+
type: STS
|
2436 |
+
dataset:
|
2437 |
+
type: mteb/sts17-crosslingual-sts
|
2438 |
+
name: MTEB STS17 (en-en)
|
2439 |
+
config: en-en
|
2440 |
+
split: test
|
2441 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2442 |
+
metrics:
|
2443 |
+
- type: cos_sim_pearson
|
2444 |
+
value: 92.09578436612053
|
2445 |
+
- type: cos_sim_spearman
|
2446 |
+
value: 92.01519349090438
|
2447 |
+
- type: euclidean_pearson
|
2448 |
+
value: 92.07113635890894
|
2449 |
+
- type: euclidean_spearman
|
2450 |
+
value: 92.01519349090438
|
2451 |
+
- type: manhattan_pearson
|
2452 |
+
value: 91.89343820765625
|
2453 |
+
- type: manhattan_spearman
|
2454 |
+
value: 91.7443476810177
|
2455 |
+
- task:
|
2456 |
+
type: STS
|
2457 |
+
dataset:
|
2458 |
+
type: mteb/sts22-crosslingual-sts
|
2459 |
+
name: MTEB STS22 (en)
|
2460 |
+
config: en
|
2461 |
+
split: test
|
2462 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2463 |
+
metrics:
|
2464 |
+
- type: cos_sim_pearson
|
2465 |
+
value: 69.29997751464549
|
2466 |
+
- type: cos_sim_spearman
|
2467 |
+
value: 68.36425436812782
|
2468 |
+
- type: euclidean_pearson
|
2469 |
+
value: 69.81381677661783
|
2470 |
+
- type: euclidean_spearman
|
2471 |
+
value: 68.36425436812782
|
2472 |
+
- type: manhattan_pearson
|
2473 |
+
value: 69.92823397008026
|
2474 |
+
- type: manhattan_spearman
|
2475 |
+
value: 68.35770640039254
|
2476 |
+
- task:
|
2477 |
+
type: STS
|
2478 |
+
dataset:
|
2479 |
+
type: mteb/stsbenchmark-sts
|
2480 |
+
name: MTEB STSBenchmark
|
2481 |
+
config: default
|
2482 |
+
split: test
|
2483 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2484 |
+
metrics:
|
2485 |
+
- type: cos_sim_pearson
|
2486 |
+
value: 88.39126315452359
|
2487 |
+
- type: cos_sim_spearman
|
2488 |
+
value: 88.99708463265337
|
2489 |
+
- type: euclidean_pearson
|
2490 |
+
value: 88.60793820038607
|
2491 |
+
- type: euclidean_spearman
|
2492 |
+
value: 88.99708463265337
|
2493 |
+
- type: manhattan_pearson
|
2494 |
+
value: 88.69860633571047
|
2495 |
+
- type: manhattan_spearman
|
2496 |
+
value: 89.20094593888012
|
2497 |
+
- task:
|
2498 |
+
type: Reranking
|
2499 |
+
dataset:
|
2500 |
+
type: mteb/scidocs-reranking
|
2501 |
+
name: MTEB SciDocsRR
|
2502 |
+
config: default
|
2503 |
+
split: test
|
2504 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2505 |
+
metrics:
|
2506 |
+
- type: map
|
2507 |
+
value: 86.58028062818582
|
2508 |
+
- type: mrr
|
2509 |
+
value: 96.53586790841693
|
2510 |
+
- task:
|
2511 |
+
type: Retrieval
|
2512 |
+
dataset:
|
2513 |
+
type: scifact
|
2514 |
+
name: MTEB SciFact
|
2515 |
+
config: default
|
2516 |
+
split: test
|
2517 |
+
revision: None
|
2518 |
+
metrics:
|
2519 |
+
- type: ndcg_at_1
|
2520 |
+
value: 66.333
|
2521 |
+
- type: ndcg_at_2
|
2522 |
+
value: 70.655
|
2523 |
+
- type: ndcg_at_3
|
2524 |
+
value: 72.801
|
2525 |
+
- type: ndcg_at_5
|
2526 |
+
value: 75.793
|
2527 |
+
- type: ndcg_at_7
|
2528 |
+
value: 76.946
|
2529 |
+
- type: ndcg_at_10
|
2530 |
+
value: 77.66199999999999
|
2531 |
+
- type: ndcg_at_20
|
2532 |
+
value: 78.786
|
2533 |
+
- type: ndcg_at_30
|
2534 |
+
value: 79.066
|
2535 |
+
- type: ndcg_at_50
|
2536 |
+
value: 79.255
|
2537 |
+
- type: ndcg_at_70
|
2538 |
+
value: 79.423
|
2539 |
+
- type: ndcg_at_100
|
2540 |
+
value: 79.476
|
2541 |
+
- type: ndcg_at_200
|
2542 |
+
value: 79.65299999999999
|
2543 |
+
- type: ndcg_at_300
|
2544 |
+
value: 79.696
|
2545 |
+
- type: ndcg_at_500
|
2546 |
+
value: 79.73599999999999
|
2547 |
+
- type: ndcg_at_700
|
2548 |
+
value: 79.77199999999999
|
2549 |
+
- type: ndcg_at_1000
|
2550 |
+
value: 79.77199999999999
|
2551 |
+
- type: map_at_1
|
2552 |
+
value: 63.383
|
2553 |
+
- type: map_at_2
|
2554 |
+
value: 68.144
|
2555 |
+
- type: map_at_3
|
2556 |
+
value: 70.19800000000001
|
2557 |
+
- type: map_at_5
|
2558 |
+
value: 72.38
|
2559 |
+
- type: map_at_7
|
2560 |
+
value: 72.955
|
2561 |
+
- type: map_at_10
|
2562 |
+
value: 73.312
|
2563 |
+
- type: map_at_20
|
2564 |
+
value: 73.678
|
2565 |
+
- type: map_at_30
|
2566 |
+
value: 73.72800000000001
|
2567 |
+
- type: map_at_50
|
2568 |
+
value: 73.75500000000001
|
2569 |
+
- type: map_at_70
|
2570 |
+
value: 73.771
|
2571 |
+
- type: map_at_100
|
2572 |
+
value: 73.776
|
2573 |
+
- type: map_at_200
|
2574 |
+
value: 73.783
|
2575 |
+
- type: map_at_300
|
2576 |
+
value: 73.784
|
2577 |
+
- type: map_at_500
|
2578 |
+
value: 73.785
|
2579 |
+
- type: map_at_700
|
2580 |
+
value: 73.786
|
2581 |
+
- type: map_at_1000
|
2582 |
+
value: 73.786
|
2583 |
+
- type: recall_at_1
|
2584 |
+
value: 63.383
|
2585 |
+
- type: recall_at_2
|
2586 |
+
value: 72.283
|
2587 |
+
- type: recall_at_3
|
2588 |
+
value: 77.183
|
2589 |
+
- type: recall_at_5
|
2590 |
+
value: 84.56099999999999
|
2591 |
+
- type: recall_at_7
|
2592 |
+
value: 87.67200000000001
|
2593 |
+
- type: recall_at_10
|
2594 |
+
value: 89.822
|
2595 |
+
- type: recall_at_20
|
2596 |
+
value: 94
|
2597 |
+
- type: recall_at_30
|
2598 |
+
value: 95.333
|
2599 |
+
- type: recall_at_50
|
2600 |
+
value: 96.333
|
2601 |
+
- type: recall_at_70
|
2602 |
+
value: 97.333
|
2603 |
+
- type: recall_at_100
|
2604 |
+
value: 97.667
|
2605 |
+
- type: recall_at_200
|
2606 |
+
value: 99
|
2607 |
+
- type: recall_at_300
|
2608 |
+
value: 99.333
|
2609 |
+
- type: recall_at_500
|
2610 |
+
value: 99.667
|
2611 |
+
- type: recall_at_700
|
2612 |
+
value: 100
|
2613 |
+
- type: recall_at_1000
|
2614 |
+
value: 100
|
2615 |
+
- type: precision_at_1
|
2616 |
+
value: 66.333
|
2617 |
+
- type: precision_at_2
|
2618 |
+
value: 38.667
|
2619 |
+
- type: precision_at_3
|
2620 |
+
value: 28.111000000000004
|
2621 |
+
- type: precision_at_5
|
2622 |
+
value: 18.933
|
2623 |
+
- type: precision_at_7
|
2624 |
+
value: 14.094999999999999
|
2625 |
+
- type: precision_at_10
|
2626 |
+
value: 10.167
|
2627 |
+
- type: precision_at_20
|
2628 |
+
value: 5.35
|
2629 |
+
- type: precision_at_30
|
2630 |
+
value: 3.611
|
2631 |
+
- type: precision_at_50
|
2632 |
+
value: 2.1870000000000003
|
2633 |
+
- type: precision_at_70
|
2634 |
+
value: 1.576
|
2635 |
+
- type: precision_at_100
|
2636 |
+
value: 1.107
|
2637 |
+
- type: precision_at_200
|
2638 |
+
value: 0.5599999999999999
|
2639 |
+
- type: precision_at_300
|
2640 |
+
value: 0.374
|
2641 |
+
- type: precision_at_500
|
2642 |
+
value: 0.22499999999999998
|
2643 |
+
- type: precision_at_700
|
2644 |
+
value: 0.161
|
2645 |
+
- type: precision_at_1000
|
2646 |
+
value: 0.11299999999999999
|
2647 |
+
- type: mrr_at_1
|
2648 |
+
value: 66.333
|
2649 |
+
- type: mrr_at_2
|
2650 |
+
value: 70.833
|
2651 |
+
- type: mrr_at_3
|
2652 |
+
value: 72.167
|
2653 |
+
- type: mrr_at_5
|
2654 |
+
value: 73.6
|
2655 |
+
- type: mrr_at_7
|
2656 |
+
value: 74.084
|
2657 |
+
- type: mrr_at_10
|
2658 |
+
value: 74.283
|
2659 |
+
- type: mrr_at_20
|
2660 |
+
value: 74.54499999999999
|
2661 |
+
- type: mrr_at_30
|
2662 |
+
value: 74.59599999999999
|
2663 |
+
- type: mrr_at_50
|
2664 |
+
value: 74.622
|
2665 |
+
- type: mrr_at_70
|
2666 |
+
value: 74.639
|
2667 |
+
- type: mrr_at_100
|
2668 |
+
value: 74.643
|
2669 |
+
- type: mrr_at_200
|
2670 |
+
value: 74.65
|
2671 |
+
- type: mrr_at_300
|
2672 |
+
value: 74.652
|
2673 |
+
- type: mrr_at_500
|
2674 |
+
value: 74.653
|
2675 |
+
- type: mrr_at_700
|
2676 |
+
value: 74.653
|
2677 |
+
- type: mrr_at_1000
|
2678 |
+
value: 74.653
|
2679 |
+
- task:
|
2680 |
+
type: PairClassification
|
2681 |
+
dataset:
|
2682 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2683 |
+
name: MTEB SprintDuplicateQuestions
|
2684 |
+
config: default
|
2685 |
+
split: test
|
2686 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2687 |
+
metrics:
|
2688 |
+
- type: cos_sim_accuracy
|
2689 |
+
value: 99.84554455445544
|
2690 |
+
- type: cos_sim_ap
|
2691 |
+
value: 96.31178339136798
|
2692 |
+
- type: cos_sim_f1
|
2693 |
+
value: 92.1921921921922
|
2694 |
+
- type: cos_sim_precision
|
2695 |
+
value: 92.28456913827655
|
2696 |
+
- type: cos_sim_recall
|
2697 |
+
value: 92.10000000000001
|
2698 |
+
- type: dot_accuracy
|
2699 |
+
value: 99.84554455445544
|
2700 |
+
- type: dot_ap
|
2701 |
+
value: 96.31178339136797
|
2702 |
+
- type: dot_f1
|
2703 |
+
value: 92.1921921921922
|
2704 |
+
- type: dot_precision
|
2705 |
+
value: 92.28456913827655
|
2706 |
+
- type: dot_recall
|
2707 |
+
value: 92.10000000000001
|
2708 |
+
- type: euclidean_accuracy
|
2709 |
+
value: 99.84554455445544
|
2710 |
+
- type: euclidean_ap
|
2711 |
+
value: 96.31178339136798
|
2712 |
+
- type: euclidean_f1
|
2713 |
+
value: 92.1921921921922
|
2714 |
+
- type: euclidean_precision
|
2715 |
+
value: 92.28456913827655
|
2716 |
+
- type: euclidean_recall
|
2717 |
+
value: 92.10000000000001
|
2718 |
+
- type: manhattan_accuracy
|
2719 |
+
value: 99.84752475247525
|
2720 |
+
- type: manhattan_ap
|
2721 |
+
value: 96.4591954606088
|
2722 |
+
- type: manhattan_f1
|
2723 |
+
value: 92.25352112676056
|
2724 |
+
- type: manhattan_precision
|
2725 |
+
value: 92.81376518218623
|
2726 |
+
- type: manhattan_recall
|
2727 |
+
value: 91.7
|
2728 |
+
- type: max_accuracy
|
2729 |
+
value: 99.84752475247525
|
2730 |
+
- type: max_ap
|
2731 |
+
value: 96.4591954606088
|
2732 |
+
- type: max_f1
|
2733 |
+
value: 92.25352112676056
|
2734 |
+
- task:
|
2735 |
+
type: Clustering
|
2736 |
+
dataset:
|
2737 |
+
type: mteb/stackexchange-clustering
|
2738 |
+
name: MTEB StackExchangeClustering
|
2739 |
+
config: default
|
2740 |
+
split: test
|
2741 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2742 |
+
metrics:
|
2743 |
+
- type: v_measure
|
2744 |
+
value: 74.24659759283294
|
2745 |
+
- task:
|
2746 |
+
type: Clustering
|
2747 |
+
dataset:
|
2748 |
+
type: mteb/stackexchange-clustering-p2p
|
2749 |
+
name: MTEB StackExchangeClusteringP2P
|
2750 |
+
config: default
|
2751 |
+
split: test
|
2752 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2753 |
+
metrics:
|
2754 |
+
- type: v_measure
|
2755 |
+
value: 46.77690051260451
|
2756 |
+
- task:
|
2757 |
+
type: Reranking
|
2758 |
+
dataset:
|
2759 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2760 |
+
name: MTEB StackOverflowDupQuestions
|
2761 |
+
config: default
|
2762 |
+
split: test
|
2763 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2764 |
+
metrics:
|
2765 |
+
- type: map
|
2766 |
+
value: 55.68436757803185
|
2767 |
+
- type: mrr
|
2768 |
+
value: 56.82157711569475
|
2769 |
+
- task:
|
2770 |
+
type: Summarization
|
2771 |
+
dataset:
|
2772 |
+
type: mteb/summeval
|
2773 |
+
name: MTEB SummEval
|
2774 |
+
config: default
|
2775 |
+
split: test
|
2776 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2777 |
+
metrics:
|
2778 |
+
- type: cos_sim_pearson
|
2779 |
+
value: 31.652482405629843
|
2780 |
+
- type: cos_sim_spearman
|
2781 |
+
value: 31.16341822347735
|
2782 |
+
- type: dot_pearson
|
2783 |
+
value: 31.652479892699837
|
2784 |
+
- type: dot_spearman
|
2785 |
+
value: 31.16341822347735
|
2786 |
+
- task:
|
2787 |
+
type: Retrieval
|
2788 |
+
dataset:
|
2789 |
+
type: trec-covid
|
2790 |
+
name: MTEB TRECCOVID
|
2791 |
+
config: default
|
2792 |
+
split: test
|
2793 |
+
revision: None
|
2794 |
+
metrics:
|
2795 |
+
- type: ndcg_at_1
|
2796 |
+
value: 92
|
2797 |
+
- type: ndcg_at_2
|
2798 |
+
value: 90.839
|
2799 |
+
- type: ndcg_at_3
|
2800 |
+
value: 90.642
|
2801 |
+
- type: ndcg_at_5
|
2802 |
+
value: 90.348
|
2803 |
+
- type: ndcg_at_7
|
2804 |
+
value: 89.015
|
2805 |
+
- type: ndcg_at_10
|
2806 |
+
value: 87.599
|
2807 |
+
- type: ndcg_at_20
|
2808 |
+
value: 84.434
|
2809 |
+
- type: ndcg_at_30
|
2810 |
+
value: 81.655
|
2811 |
+
- type: ndcg_at_50
|
2812 |
+
value: 77.278
|
2813 |
+
- type: ndcg_at_70
|
2814 |
+
value: 73.957
|
2815 |
+
- type: ndcg_at_100
|
2816 |
+
value: 69.56
|
2817 |
+
- type: ndcg_at_200
|
2818 |
+
value: 60.724000000000004
|
2819 |
+
- type: ndcg_at_300
|
2820 |
+
value: 57.245000000000005
|
2821 |
+
- type: ndcg_at_500
|
2822 |
+
value: 56.316
|
2823 |
+
- type: ndcg_at_700
|
2824 |
+
value: 58.399
|
2825 |
+
- type: ndcg_at_1000
|
2826 |
+
value: 62.21600000000001
|
2827 |
+
- type: map_at_1
|
2828 |
+
value: 0.247
|
2829 |
+
- type: map_at_2
|
2830 |
+
value: 0.488
|
2831 |
+
- type: map_at_3
|
2832 |
+
value: 0.7230000000000001
|
2833 |
+
- type: map_at_5
|
2834 |
+
value: 1.204
|
2835 |
+
- type: map_at_7
|
2836 |
+
value: 1.6500000000000001
|
2837 |
+
- type: map_at_10
|
2838 |
+
value: 2.292
|
2839 |
+
- type: map_at_20
|
2840 |
+
value: 4.274
|
2841 |
+
- type: map_at_30
|
2842 |
+
value: 6.027
|
2843 |
+
- type: map_at_50
|
2844 |
+
value: 9.083
|
2845 |
+
- type: map_at_70
|
2846 |
+
value: 11.751000000000001
|
2847 |
+
- type: map_at_100
|
2848 |
+
value: 14.912
|
2849 |
+
- type: map_at_200
|
2850 |
+
value: 22.213
|
2851 |
+
- type: map_at_300
|
2852 |
+
value: 26.667999999999996
|
2853 |
+
- type: map_at_500
|
2854 |
+
value: 31.556
|
2855 |
+
- type: map_at_700
|
2856 |
+
value: 34.221000000000004
|
2857 |
+
- type: map_at_1000
|
2858 |
+
value: 36.443999999999996
|
2859 |
+
- type: recall_at_1
|
2860 |
+
value: 0.247
|
2861 |
+
- type: recall_at_2
|
2862 |
+
value: 0.49899999999999994
|
2863 |
+
- type: recall_at_3
|
2864 |
+
value: 0.742
|
2865 |
+
- type: recall_at_5
|
2866 |
+
value: 1.247
|
2867 |
+
- type: recall_at_7
|
2868 |
+
value: 1.722
|
2869 |
+
- type: recall_at_10
|
2870 |
+
value: 2.405
|
2871 |
+
- type: recall_at_20
|
2872 |
+
value: 4.583
|
2873 |
+
- type: recall_at_30
|
2874 |
+
value: 6.587999999999999
|
2875 |
+
- type: recall_at_50
|
2876 |
+
value: 10.188
|
2877 |
+
- type: recall_at_70
|
2878 |
+
value: 13.496
|
2879 |
+
- type: recall_at_100
|
2880 |
+
value: 17.578
|
2881 |
+
- type: recall_at_200
|
2882 |
+
value: 28.158
|
2883 |
+
- type: recall_at_300
|
2884 |
+
value: 35.532000000000004
|
2885 |
+
- type: recall_at_500
|
2886 |
+
value: 45.31
|
2887 |
+
- type: recall_at_700
|
2888 |
+
value: 51.822
|
2889 |
+
- type: recall_at_1000
|
2890 |
+
value: 58.53
|
2891 |
+
- type: precision_at_1
|
2892 |
+
value: 96
|
2893 |
+
- type: precision_at_2
|
2894 |
+
value: 96
|
2895 |
+
- type: precision_at_3
|
2896 |
+
value: 95.333
|
2897 |
+
- type: precision_at_5
|
2898 |
+
value: 94.8
|
2899 |
+
- type: precision_at_7
|
2900 |
+
value: 93.429
|
2901 |
+
- type: precision_at_10
|
2902 |
+
value: 91.4
|
2903 |
+
- type: precision_at_20
|
2904 |
+
value: 87.7
|
2905 |
+
- type: precision_at_30
|
2906 |
+
value: 84.867
|
2907 |
+
- type: precision_at_50
|
2908 |
+
value: 80.24
|
2909 |
+
- type: precision_at_70
|
2910 |
+
value: 76.371
|
2911 |
+
- type: precision_at_100
|
2912 |
+
value: 71.08
|
2913 |
+
- type: precision_at_200
|
2914 |
+
value: 59.4
|
2915 |
+
- type: precision_at_300
|
2916 |
+
value: 51.459999999999994
|
2917 |
+
- type: precision_at_500
|
2918 |
+
value: 40.644000000000005
|
2919 |
+
- type: precision_at_700
|
2920 |
+
value: 33.889
|
2921 |
+
- type: precision_at_1000
|
2922 |
+
value: 27.250000000000004
|
2923 |
+
- type: mrr_at_1
|
2924 |
+
value: 96
|
2925 |
+
- type: mrr_at_2
|
2926 |
+
value: 98
|
2927 |
+
- type: mrr_at_3
|
2928 |
+
value: 98
|
2929 |
+
- type: mrr_at_5
|
2930 |
+
value: 98
|
2931 |
+
- type: mrr_at_7
|
2932 |
+
value: 98
|
2933 |
+
- type: mrr_at_10
|
2934 |
+
value: 98
|
2935 |
+
- type: mrr_at_20
|
2936 |
+
value: 98
|
2937 |
+
- type: mrr_at_30
|
2938 |
+
value: 98
|
2939 |
+
- type: mrr_at_50
|
2940 |
+
value: 98
|
2941 |
+
- type: mrr_at_70
|
2942 |
+
value: 98
|
2943 |
+
- type: mrr_at_100
|
2944 |
+
value: 98
|
2945 |
+
- type: mrr_at_200
|
2946 |
+
value: 98
|
2947 |
+
- type: mrr_at_300
|
2948 |
+
value: 98
|
2949 |
+
- type: mrr_at_500
|
2950 |
+
value: 98
|
2951 |
+
- type: mrr_at_700
|
2952 |
+
value: 98
|
2953 |
+
- type: mrr_at_1000
|
2954 |
+
value: 98
|
2955 |
+
- task:
|
2956 |
+
type: Retrieval
|
2957 |
+
dataset:
|
2958 |
+
type: webis-touche2020
|
2959 |
+
name: MTEB Touche2020
|
2960 |
+
config: default
|
2961 |
+
split: test
|
2962 |
+
revision: None
|
2963 |
+
metrics:
|
2964 |
+
- type: ndcg_at_1
|
2965 |
+
value: 43.878
|
2966 |
+
- type: ndcg_at_2
|
2967 |
+
value: 37.956
|
2968 |
+
- type: ndcg_at_3
|
2969 |
+
value: 35.053
|
2970 |
+
- type: ndcg_at_5
|
2971 |
+
value: 32.59
|
2972 |
+
- type: ndcg_at_7
|
2973 |
+
value: 30.226
|
2974 |
+
- type: ndcg_at_10
|
2975 |
+
value: 29.005
|
2976 |
+
- type: ndcg_at_20
|
2977 |
+
value: 30.11
|
2978 |
+
- type: ndcg_at_30
|
2979 |
+
value: 32.019999999999996
|
2980 |
+
- type: ndcg_at_50
|
2981 |
+
value: 34.354
|
2982 |
+
- type: ndcg_at_70
|
2983 |
+
value: 36.665
|
2984 |
+
- type: ndcg_at_100
|
2985 |
+
value: 38.888
|
2986 |
+
- type: ndcg_at_200
|
2987 |
+
value: 43.435
|
2988 |
+
- type: ndcg_at_300
|
2989 |
+
value: 45.795
|
2990 |
+
- type: ndcg_at_500
|
2991 |
+
value: 48.699999999999996
|
2992 |
+
- type: ndcg_at_700
|
2993 |
+
value: 50.242
|
2994 |
+
- type: ndcg_at_1000
|
2995 |
+
value: 51.529
|
2996 |
+
- type: map_at_1
|
2997 |
+
value: 3.521
|
2998 |
+
- type: map_at_2
|
2999 |
+
value: 5.309
|
3000 |
+
- type: map_at_3
|
3001 |
+
value: 6.576
|
3002 |
+
- type: map_at_5
|
3003 |
+
value: 8.97
|
3004 |
+
- type: map_at_7
|
3005 |
+
value: 10.194
|
3006 |
+
- type: map_at_10
|
3007 |
+
value: 11.949
|
3008 |
+
- type: map_at_20
|
3009 |
+
value: 14.686
|
3010 |
+
- type: map_at_30
|
3011 |
+
value: 15.8
|
3012 |
+
- type: map_at_50
|
3013 |
+
value: 16.59
|
3014 |
+
- type: map_at_70
|
3015 |
+
value: 17.2
|
3016 |
+
- type: map_at_100
|
3017 |
+
value: 17.765
|
3018 |
+
- type: map_at_200
|
3019 |
+
value: 18.636
|
3020 |
+
- type: map_at_300
|
3021 |
+
value: 18.972
|
3022 |
+
- type: map_at_500
|
3023 |
+
value: 19.301
|
3024 |
+
- type: map_at_700
|
3025 |
+
value: 19.445
|
3026 |
+
- type: map_at_1000
|
3027 |
+
value: 19.546
|
3028 |
+
- type: recall_at_1
|
3029 |
+
value: 3.521
|
3030 |
+
- type: recall_at_2
|
3031 |
+
value: 5.848
|
3032 |
+
- type: recall_at_3
|
3033 |
+
value: 7.657
|
3034 |
+
- type: recall_at_5
|
3035 |
+
value: 11.368
|
3036 |
+
- type: recall_at_7
|
3037 |
+
value: 13.748
|
3038 |
+
- type: recall_at_10
|
3039 |
+
value: 18.061
|
3040 |
+
- type: recall_at_20
|
3041 |
+
value: 26.844
|
3042 |
+
- type: recall_at_30
|
3043 |
+
value: 31.186000000000003
|
3044 |
+
- type: recall_at_50
|
3045 |
+
value: 35.951
|
3046 |
+
- type: recall_at_70
|
3047 |
+
value: 40.961999999999996
|
3048 |
+
- type: recall_at_100
|
3049 |
+
value: 46.743
|
3050 |
+
- type: recall_at_200
|
3051 |
+
value: 58.483
|
3052 |
+
- type: recall_at_300
|
3053 |
+
value: 65.973
|
3054 |
+
- type: recall_at_500
|
3055 |
+
value: 75.233
|
3056 |
+
- type: recall_at_700
|
3057 |
+
value: 80.472
|
3058 |
+
- type: recall_at_1000
|
3059 |
+
value: 85.02
|
3060 |
+
- type: precision_at_1
|
3061 |
+
value: 46.939
|
3062 |
+
- type: precision_at_2
|
3063 |
+
value: 38.775999999999996
|
3064 |
+
- type: precision_at_3
|
3065 |
+
value: 34.694
|
3066 |
+
- type: precision_at_5
|
3067 |
+
value: 31.429000000000002
|
3068 |
+
- type: precision_at_7
|
3069 |
+
value: 27.697
|
3070 |
+
- type: precision_at_10
|
3071 |
+
value: 24.490000000000002
|
3072 |
+
- type: precision_at_20
|
3073 |
+
value: 18.776
|
3074 |
+
- type: precision_at_30
|
3075 |
+
value: 15.034
|
3076 |
+
- type: precision_at_50
|
3077 |
+
value: 10.857
|
3078 |
+
- type: precision_at_70
|
3079 |
+
value: 9.096
|
3080 |
+
- type: precision_at_100
|
3081 |
+
value: 7.51
|
3082 |
+
- type: precision_at_200
|
3083 |
+
value: 4.929
|
3084 |
+
- type: precision_at_300
|
3085 |
+
value: 3.7760000000000002
|
3086 |
+
- type: precision_at_500
|
3087 |
+
value: 2.6780000000000004
|
3088 |
+
- type: precision_at_700
|
3089 |
+
value: 2.085
|
3090 |
+
- type: precision_at_1000
|
3091 |
+
value: 1.5709999999999997
|
3092 |
+
- type: mrr_at_1
|
3093 |
+
value: 46.939
|
3094 |
+
- type: mrr_at_2
|
3095 |
+
value: 55.102
|
3096 |
+
- type: mrr_at_3
|
3097 |
+
value: 57.823
|
3098 |
+
- type: mrr_at_5
|
3099 |
+
value: 60.68
|
3100 |
+
- type: mrr_at_7
|
3101 |
+
value: 60.972
|
3102 |
+
- type: mrr_at_10
|
3103 |
+
value: 61.199000000000005
|
3104 |
+
- type: mrr_at_20
|
3105 |
+
value: 61.831
|
3106 |
+
- type: mrr_at_30
|
3107 |
+
value: 61.831
|
3108 |
+
- type: mrr_at_50
|
3109 |
+
value: 61.873
|
3110 |
+
- type: mrr_at_70
|
3111 |
+
value: 61.873
|
3112 |
+
- type: mrr_at_100
|
3113 |
+
value: 61.873
|
3114 |
+
- type: mrr_at_200
|
3115 |
+
value: 61.873
|
3116 |
+
- type: mrr_at_300
|
3117 |
+
value: 61.873
|
3118 |
+
- type: mrr_at_500
|
3119 |
+
value: 61.873
|
3120 |
+
- type: mrr_at_700
|
3121 |
+
value: 61.873
|
3122 |
+
- type: mrr_at_1000
|
3123 |
+
value: 61.873
|
3124 |
+
- task:
|
3125 |
+
type: Classification
|
3126 |
+
dataset:
|
3127 |
+
type: mteb/toxic_conversations_50k
|
3128 |
+
name: MTEB ToxicConversationsClassification
|
3129 |
+
config: default
|
3130 |
+
split: test
|
3131 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
3132 |
+
metrics:
|
3133 |
+
- type: accuracy
|
3134 |
+
value: 69.3294
|
3135 |
+
- type: ap
|
3136 |
+
value: 14.561333393364736
|
3137 |
+
- type: f1
|
3138 |
+
value: 53.992309820496466
|
3139 |
+
- task:
|
3140 |
+
type: Classification
|
3141 |
+
dataset:
|
3142 |
+
type: mteb/tweet_sentiment_extraction
|
3143 |
+
name: MTEB TweetSentimentExtractionClassification
|
3144 |
+
config: default
|
3145 |
+
split: test
|
3146 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
3147 |
+
metrics:
|
3148 |
+
- type: accuracy
|
3149 |
+
value: 63.63893604980192
|
3150 |
+
- type: f1
|
3151 |
+
value: 63.92959380489434
|
3152 |
+
- task:
|
3153 |
+
type: Clustering
|
3154 |
+
dataset:
|
3155 |
+
type: mteb/twentynewsgroups-clustering
|
3156 |
+
name: MTEB TwentyNewsgroupsClustering
|
3157 |
+
config: default
|
3158 |
+
split: test
|
3159 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
3160 |
+
metrics:
|
3161 |
+
- type: v_measure
|
3162 |
+
value: 56.270879258659775
|
3163 |
+
- task:
|
3164 |
+
type: PairClassification
|
3165 |
+
dataset:
|
3166 |
+
type: mteb/twittersemeval2015-pairclassification
|
3167 |
+
name: MTEB TwitterSemEval2015
|
3168 |
+
config: default
|
3169 |
+
split: test
|
3170 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
3171 |
+
metrics:
|
3172 |
+
- type: cos_sim_accuracy
|
3173 |
+
value: 88.71073493473207
|
3174 |
+
- type: cos_sim_ap
|
3175 |
+
value: 81.52392540284202
|
3176 |
+
- type: cos_sim_f1
|
3177 |
+
value: 74.71162377994676
|
3178 |
+
- type: cos_sim_precision
|
3179 |
+
value: 71.89558428885094
|
3180 |
+
- type: cos_sim_recall
|
3181 |
+
value: 77.75725593667546
|
3182 |
+
- type: dot_accuracy
|
3183 |
+
value: 88.71073493473207
|
3184 |
+
- type: dot_ap
|
3185 |
+
value: 81.52394754041109
|
3186 |
+
- type: dot_f1
|
3187 |
+
value: 74.71162377994676
|
3188 |
+
- type: dot_precision
|
3189 |
+
value: 71.89558428885094
|
3190 |
+
- type: dot_recall
|
3191 |
+
value: 77.75725593667546
|
3192 |
+
- type: euclidean_accuracy
|
3193 |
+
value: 88.71073493473207
|
3194 |
+
- type: euclidean_ap
|
3195 |
+
value: 81.52392035435321
|
3196 |
+
- type: euclidean_f1
|
3197 |
+
value: 74.71162377994676
|
3198 |
+
- type: euclidean_precision
|
3199 |
+
value: 71.89558428885094
|
3200 |
+
- type: euclidean_recall
|
3201 |
+
value: 77.75725593667546
|
3202 |
+
- type: manhattan_accuracy
|
3203 |
+
value: 88.47231328604637
|
3204 |
+
- type: manhattan_ap
|
3205 |
+
value: 81.22907439267321
|
3206 |
+
- type: manhattan_f1
|
3207 |
+
value: 74.3351571446749
|
3208 |
+
- type: manhattan_precision
|
3209 |
+
value: 71.78667977390022
|
3210 |
+
- type: manhattan_recall
|
3211 |
+
value: 77.0712401055409
|
3212 |
+
- type: max_accuracy
|
3213 |
+
value: 88.71073493473207
|
3214 |
+
- type: max_ap
|
3215 |
+
value: 81.52394754041109
|
3216 |
+
- type: max_f1
|
3217 |
+
value: 74.71162377994676
|
3218 |
+
- task:
|
3219 |
+
type: PairClassification
|
3220 |
+
dataset:
|
3221 |
+
type: mteb/twitterurlcorpus-pairclassification
|
3222 |
+
name: MTEB TwitterURLCorpus
|
3223 |
+
config: default
|
3224 |
+
split: test
|
3225 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
3226 |
+
metrics:
|
3227 |
+
- type: cos_sim_accuracy
|
3228 |
+
value: 89.85136026700819
|
3229 |
+
- type: cos_sim_ap
|
3230 |
+
value: 87.7768002924216
|
3231 |
+
- type: cos_sim_f1
|
3232 |
+
value: 80.358908624794
|
3233 |
+
- type: cos_sim_precision
|
3234 |
+
value: 76.62918209122023
|
3235 |
+
- type: cos_sim_recall
|
3236 |
+
value: 84.47028025870034
|
3237 |
+
- type: dot_accuracy
|
3238 |
+
value: 89.85136026700819
|
3239 |
+
- type: dot_ap
|
3240 |
+
value: 87.77680027889778
|
3241 |
+
- type: dot_f1
|
3242 |
+
value: 80.358908624794
|
3243 |
+
- type: dot_precision
|
3244 |
+
value: 76.62918209122023
|
3245 |
+
- type: dot_recall
|
3246 |
+
value: 84.47028025870034
|
3247 |
+
- type: euclidean_accuracy
|
3248 |
+
value: 89.85136026700819
|
3249 |
+
- type: euclidean_ap
|
3250 |
+
value: 87.77680174697751
|
3251 |
+
- type: euclidean_f1
|
3252 |
+
value: 80.358908624794
|
3253 |
+
- type: euclidean_precision
|
3254 |
+
value: 76.62918209122023
|
3255 |
+
- type: euclidean_recall
|
3256 |
+
value: 84.47028025870034
|
3257 |
+
- type: manhattan_accuracy
|
3258 |
+
value: 89.86300306593705
|
3259 |
+
- type: manhattan_ap
|
3260 |
+
value: 87.78613271895861
|
3261 |
+
- type: manhattan_f1
|
3262 |
+
value: 80.31831016905645
|
3263 |
+
- type: manhattan_precision
|
3264 |
+
value: 76.68230516070304
|
3265 |
+
- type: manhattan_recall
|
3266 |
+
value: 84.3162919618109
|
3267 |
+
- type: max_accuracy
|
3268 |
+
value: 89.86300306593705
|
3269 |
+
- type: max_ap
|
3270 |
+
value: 87.78613271895861
|
3271 |
+
- type: max_f1
|
3272 |
+
value: 80.358908624794
|
3273 |
+
language:
|
3274 |
+
- en
|
3275 |
+
license: cc-by-nc-4.0
|
3276 |
+
---
|
3277 |
+
|
3278 |
+
<h1 align="center">Salesforce/SFR-Embedding-Mistral</h1>
|
3279 |
+
|
3280 |
+
**SFR-Embedding by Salesforce Research.**
|
3281 |
+
|
3282 |
+
The model is trained on top of [E5-mistral-7b-instruct](https://huggingface.co/intfloat/e5-mistral-7b-instruct) and [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1).
|
3283 |
+
|
3284 |
+
This project is for research purposes only. Third-party datasets may be subject to additional terms and conditions under their associated licenses. Please refer to specific papers for more details:
|
3285 |
+
- [MTEB benchmark](https://arxiv.org/abs/2210.07316)
|
3286 |
+
- [Mistral](https://arxiv.org/abs/2310.06825)
|
3287 |
+
- [E5-mistral-7b-instruct](https://arxiv.org/pdf/2401.00368.pdf)
|
3288 |
+
|
3289 |
+
More technical details will be updated later.
|
3290 |
+
|
3291 |
+
## How to run
|
3292 |
+
|
3293 |
+
### Transformers
|
3294 |
+
The models can be used as follows:
|
3295 |
+
```python
|
3296 |
+
import torch
|
3297 |
+
import torch.nn.functional as F
|
3298 |
+
from torch import Tensor
|
3299 |
+
from transformers import AutoTokenizer, AutoModel
|
3300 |
+
|
3301 |
+
def last_token_pool(last_hidden_states: Tensor,
|
3302 |
+
attention_mask: Tensor) -> Tensor:
|
3303 |
+
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
|
3304 |
+
if left_padding:
|
3305 |
+
return last_hidden_states[:, -1]
|
3306 |
+
else:
|
3307 |
+
sequence_lengths = attention_mask.sum(dim=1) - 1
|
3308 |
+
batch_size = last_hidden_states.shape[0]
|
3309 |
+
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
|
3310 |
+
|
3311 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
3312 |
+
return f'Instruct: {task_description}\nQuery: {query}'
|
3313 |
+
|
3314 |
+
# Each query must come with a one-sentence instruction that describes the task
|
3315 |
+
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
3316 |
+
queries = [
|
3317 |
+
get_detailed_instruct(task, 'How to bake a chocolate cake'),
|
3318 |
+
get_detailed_instruct(task, 'Symptoms of the flu')
|
3319 |
+
]
|
3320 |
+
# No need to add instruction for retrieval documents
|
3321 |
+
passages = [
|
3322 |
+
"To bake a delicious chocolate cake, you'll need the following ingredients: all-purpose flour, sugar, cocoa powder, baking powder, baking soda, salt, eggs, milk, vegetable oil, and vanilla extract. Start by preheating your oven to 350°F (175°C). In a mixing bowl, combine the dry ingredients (flour, sugar, cocoa powder, baking powder, baking soda, and salt). In a separate bowl, whisk together the wet ingredients (eggs, milk, vegetable oil, and vanilla extract). Gradually add the wet mixture to the dry ingredients, stirring until well combined. Pour the batter into a greased cake pan and bake for 30-35 minutes. Let it cool before frosting with your favorite chocolate frosting. Enjoy your homemade chocolate cake!",
|
3323 |
+
"The flu, or influenza, is an illness caused by influenza viruses. Common symptoms of the flu include a high fever, chills, cough, sore throat, runny or stuffy nose, body aches, headache, fatigue, and sometimes nausea and vomiting. These symptoms can come on suddenly and are usually more severe than the common cold. It's important to get plenty of rest, stay hydrated, and consult a healthcare professional if you suspect you have the flu. In some cases, antiviral medications can help alleviate symptoms and reduce the duration of the illness."
|
3324 |
+
]
|
3325 |
+
|
3326 |
+
# load model and tokenizer
|
3327 |
+
tokenizer = AutoTokenizer.from_pretrained('Salesforce/SFR-Embedding-Mistral')
|
3328 |
+
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Mistral')
|
3329 |
+
|
3330 |
+
# get the embeddings
|
3331 |
+
max_length = 4096
|
3332 |
+
input_texts = queries + passages
|
3333 |
+
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors="pt")
|
3334 |
+
outputs = model(**batch_dict)
|
3335 |
+
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
3336 |
+
|
3337 |
+
# normalize embeddings
|
3338 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
3339 |
+
scores = (embeddings[:2] @ embeddings[2:].T) * 100
|
3340 |
+
print(scores.tolist())
|
3341 |
+
# [[86.7153549194336, 36.64569091796875], [35.00493621826172, 82.0738525390625]]
|
3342 |
+
```
|
3343 |
+
|
3344 |
+
### Sentence Transformers
|
3345 |
+
```python
|
3346 |
+
|
3347 |
+
from sentence_transformers import SentenceTransformer, util
|
3348 |
+
|
3349 |
+
model = SentenceTransformer("Salesforce/SFR-Embedding-Mistral")
|
3350 |
+
|
3351 |
+
def get_detailed_instruct(task_description: str, query: str) -> str:
|
3352 |
+
return f'Instruct: {task_description}\nQuery: {query}'
|
3353 |
+
|
3354 |
+
# Each query must come with a one-sentence instruction that describes the task
|
3355 |
+
task = 'Given a web search query, retrieve relevant passages that answer the query'
|
3356 |
+
queries = [
|
3357 |
+
get_detailed_instruct(task, 'How to bake a chocolate cake'),
|
3358 |
+
get_detailed_instruct(task, 'Symptoms of the flu')
|
3359 |
+
]
|
3360 |
+
# No need to add instruction for retrieval documents
|
3361 |
+
passages = [
|
3362 |
+
"To bake a delicious chocolate cake, you'll need the following ingredients: all-purpose flour, sugar, cocoa powder, baking powder, baking soda, salt, eggs, milk, vegetable oil, and vanilla extract. Start by preheating your oven to 350°F (175°C). In a mixing bowl, combine the dry ingredients (flour, sugar, cocoa powder, baking powder, baking soda, and salt). In a separate bowl, whisk together the wet ingredients (eggs, milk, vegetable oil, and vanilla extract). Gradually add the wet mixture to the dry ingredients, stirring until well combined. Pour the batter into a greased cake pan and bake for 30-35 minutes. Let it cool before frosting with your favorite chocolate frosting. Enjoy your homemade chocolate cake!",
|
3363 |
+
"The flu, or influenza, is an illness caused by influenza viruses. Common symptoms of the flu include a high fever, chills, cough, sore throat, runny or stuffy nose, body aches, headache, fatigue, and sometimes nausea and vomiting. These symptoms can come on suddenly and are usually more severe than the common cold. It's important to get plenty of rest, stay hydrated, and consult a healthcare professional if you suspect you have the flu. In some cases, antiviral medications can help alleviate symptoms and reduce the duration of the illness."
|
3364 |
+
]
|
3365 |
+
|
3366 |
+
embeddings = model.encode(queries + passages)
|
3367 |
+
scores = util.cos_sim(embeddings[:2], embeddings[2:]) * 100
|
3368 |
+
print(scores.tolist())
|
3369 |
+
# [[86.71537780761719, 36.645721435546875], [35.00497055053711, 82.07388305664062]]
|
3370 |
+
```
|
3371 |
+
|
3372 |
+
### MTEB Benchmark Evaluation
|
3373 |
+
Check out [unilm/e5](https://github.com/microsoft/unilm/tree/master/e5) to reproduce evaluation results on the [BEIR](https://arxiv.org/abs/2104.08663) and [MTEB](https://arxiv.org/abs/2210.07316) benchmark.
|
3374 |
+
|
3375 |
+
|
3376 |
+
SFR-Embedding Team (∗indicates lead contributors).
|
3377 |
+
* Rui Meng*
|
3378 |
+
* Ye Liu*
|
3379 |
+
* Shafiq Rayhan Joty
|
3380 |
+
* Caiming Xiong
|
3381 |
+
* Yingbo Zhou
|
3382 |
+
* Semih Yavuz
|
3383 |
+
|
3384 |
+
### Citation
|
3385 |
+
```bibtex
|
3386 |
+
@misc{SFRAIResearch2024,
|
3387 |
+
title={SFR-Embedding-Mistral:Enhance Text Retrieval with Transfer Learning},
|
3388 |
+
author={Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, Semih Yavuz},
|
3389 |
+
howpublished={Salesforce AI Research Blog},
|
3390 |
+
year={2024},
|
3391 |
+
url={https://blog.salesforceairesearch.com/sfr-embedded-mistral/}
|
3392 |
+
}
|
3393 |
+
```
|
3394 |
+
|
3395 |
+
|
3396 |
+
|
3397 |
+
|
3398 |
+
|
cache/models--Salesforce--SFR-Embedding-Mistral/refs/main
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
938c560d1c236aa563b2dbdf084f28ab28bccb11
|
cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../blobs/feb95adc7e79e878999ba5a1d3ddfe9f16eff0f1
|
cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../blobs/c19160bba3c1267f959caf6d13fb07f9ea232e04
|
cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/config_sentence_transformers.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../blobs/ef62bf21fb2396937098b86ae80c68813b229c18
|
cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/model.safetensors.index.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../blobs/f8194e4e9432d287bf257d4a7d4a0f2446c32da8
|
cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/modules.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../blobs/f7640f94e81bb7f4f04daf1668850b38763a13d9
|
cache/models--Salesforce--SFR-Embedding-Mistral/snapshots/938c560d1c236aa563b2dbdf084f28ab28bccb11/sentence_bert_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
../../blobs/42dcdfcaf9e42a488d4be06500dd771d7aa11e83
|
docker-compose.yml
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
version: "3.5"
|
2 |
+
|
3 |
+
networks:
|
4 |
+
metavoice-net:
|
5 |
+
driver: bridge
|
6 |
+
|
7 |
+
volumes:
|
8 |
+
hf-cache:
|
9 |
+
driver: local
|
10 |
+
|
11 |
+
x-common-settings: &common-settings
|
12 |
+
volumes:
|
13 |
+
- hf-cache:/.hf-cache
|
14 |
+
- ./assets:/app/assets
|
15 |
+
deploy:
|
16 |
+
replicas: 1
|
17 |
+
resources:
|
18 |
+
reservations:
|
19 |
+
devices:
|
20 |
+
- driver: nvidia
|
21 |
+
count: 1
|
22 |
+
capabilities: [ gpu ]
|
23 |
+
runtime: nvidia
|
24 |
+
ipc: host
|
25 |
+
tty: true # enable colorized logs
|
26 |
+
build:
|
27 |
+
context: .
|
28 |
+
image: metavoice-server:latest
|
29 |
+
networks:
|
30 |
+
- metavoice-net
|
31 |
+
environment:
|
32 |
+
- NVIDIA_VISIBLE_DEVICES=all
|
33 |
+
- HF_HOME=/.hf-cache
|
34 |
+
logging:
|
35 |
+
options:
|
36 |
+
max-size: "100m"
|
37 |
+
max-file: "10"
|
38 |
+
|
39 |
+
services:
|
40 |
+
server:
|
41 |
+
<<: *common-settings
|
42 |
+
container_name: metavoice-server
|
43 |
+
command: [ "--port=58004" ]
|
44 |
+
ports:
|
45 |
+
- 58004:58004
|
46 |
+
healthcheck:
|
47 |
+
test: [ "CMD", "curl", "http://metavoice-server:58004/health" ]
|
48 |
+
interval: 1m
|
49 |
+
timeout: 10s
|
50 |
+
retries: 20
|
51 |
+
ui:
|
52 |
+
<<: *common-settings
|
53 |
+
container_name: metavoice-ui
|
54 |
+
entrypoint: [ "python3.10", "app.py" ]
|
55 |
+
ports:
|
56 |
+
- 7861:7861
|
57 |
+
healthcheck:
|
58 |
+
test: [ "CMD", "curl", "http://localhost:7861" ]
|
59 |
+
interval: 1m
|
60 |
+
timeout: 10s
|
61 |
+
retries: 1
|
emo-knob-teaser-1.svg
ADDED
fam/__init__.py
ADDED
File without changes
|
fam/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (149 Bytes). View file
|
|
fam/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (145 Bytes). View file
|
|
fam/llm/__init__.py
ADDED
File without changes
|
fam/llm/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (153 Bytes). View file
|
|
fam/llm/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (149 Bytes). View file
|
|
fam/llm/__pycache__/decoders.cpython-310.pyc
ADDED
Binary file (3.52 kB). View file
|
|
fam/llm/__pycache__/decoders.cpython-39.pyc
ADDED
Binary file (3.49 kB). View file
|
|
fam/llm/__pycache__/enhancers.cpython-310.pyc
ADDED
Binary file (3.64 kB). View file
|
|
fam/llm/__pycache__/enhancers.cpython-39.pyc
ADDED
Binary file (3.62 kB). View file
|
|
fam/llm/__pycache__/fast_inference.cpython-310.pyc
ADDED
Binary file (4.53 kB). View file
|
|
fam/llm/__pycache__/fast_inference.cpython-39.pyc
ADDED
Binary file (4.51 kB). View file
|
|
fam/llm/__pycache__/fast_inference_utils.cpython-310.pyc
ADDED
Binary file (9.71 kB). View file
|
|
fam/llm/__pycache__/fast_inference_utils.cpython-39.pyc
ADDED
Binary file (9.64 kB). View file
|
|
fam/llm/__pycache__/fast_model.cpython-310.pyc
ADDED
Binary file (9.15 kB). View file
|
|
fam/llm/__pycache__/fast_model.cpython-39.pyc
ADDED
Binary file (9.14 kB). View file
|
|
fam/llm/__pycache__/inference.cpython-310.pyc
ADDED
Binary file (15.7 kB). View file
|
|
fam/llm/__pycache__/inference.cpython-39.pyc
ADDED
Binary file (15.6 kB). View file
|
|
fam/llm/__pycache__/model.cpython-310.pyc
ADDED
Binary file (12.9 kB). View file
|
|
fam/llm/__pycache__/model.cpython-39.pyc
ADDED
Binary file (12.9 kB). View file
|
|
fam/llm/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (2.51 kB). View file
|
|