Spaces:
Running
Running
File size: 8,529 Bytes
c262d1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
#!/usr/bin/env python3
"""
Quick Clean Test - Test 5 representative questions without overrides
"""
import os
import sys
import json
import time
from pathlib import Path
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))
# Local imports
from gaia_web_loader import GAIAQuestionLoaderWeb
from main import GAIASolver
from question_classifier import QuestionClassifier
def load_validation_answers():
"""Load correct answers from GAIA validation metadata"""
answers = {}
try:
validation_path = Path(__file__).parent.parent / 'gaia_validation_metadata.jsonl'
with open(validation_path, 'r') as f:
for line in f:
if line.strip():
data = json.loads(line.strip())
task_id = data.get('task_id')
final_answer = data.get('Final answer')
if task_id and final_answer:
answers[task_id] = final_answer
except Exception as e:
print(f"β οΈ Could not load validation data: {e}")
return answers
def validate_answer(task_id: str, our_answer: str, validation_answers: dict):
"""Validate our answer against the correct answer"""
if task_id not in validation_answers:
return None
expected = str(validation_answers[task_id]).strip()
our_clean = str(our_answer).strip()
# Exact match
if our_clean.lower() == expected.lower():
return {"status": "CORRECT", "expected": expected, "our": our_clean}
# Check if our answer contains the expected answer
if expected.lower() in our_clean.lower():
return {"status": "PARTIAL", "expected": expected, "our": our_clean}
return {"status": "INCORRECT", "expected": expected, "our": our_clean}
def test_single_question(question_data, validation_answers, model="qwen3-235b"):
"""Test a single question without any overrides"""
task_id = question_data.get('task_id', 'unknown')
try:
print(f"π§ͺ [{task_id[:8]}...] Starting...")
# Initialize solver and classifier
solver = GAIASolver(use_kluster=True, kluster_model=model)
classifier = QuestionClassifier()
# Classify the question
question_text = question_data.get('question', '')
file_name = question_data.get('file_name', '')
classification = classifier.classify_question(question_text, file_name)
# Solve the question (NO OVERRIDES - pure LLM reasoning)
start_time = time.time()
answer = solver.solve_question(question_data)
end_time = time.time()
duration = end_time - start_time
# Validate answer
validation_result = validate_answer(task_id, answer, validation_answers)
result = {
'task_id': task_id,
'question_type': classification['primary_agent'],
'our_answer': str(answer),
'expected_answer': validation_result['expected'] if validation_result else 'N/A',
'status': validation_result['status'] if validation_result else 'NO_VALIDATION',
'duration': duration,
}
status_icon = "β
" if result['status'] == "CORRECT" else "π‘" if result['status'] == "PARTIAL" else "β"
print(f"{status_icon} [{task_id[:8]}...] {result['status']} | {result['question_type']} | {duration:.1f}s")
print(f" Expected: {result['expected_answer']}")
print(f" Got: {result['our_answer']}")
return result
except Exception as e:
print(f"β [{task_id[:8]}...] ERROR: {str(e)}")
return {
'task_id': task_id,
'question_type': 'error',
'our_answer': '',
'expected_answer': validation_answers.get(task_id, 'N/A'),
'status': 'ERROR',
'duration': 0.0,
'error': str(e)
}
def run_quick_clean_test():
"""Run quick clean test on 5 representative questions"""
print("π§ͺ QUICK CLEAN TEST - NO OVERRIDES")
print("=" * 50)
print("π― Testing 5 representative questions")
print("π« No hardcoded answers or overrides")
print("π€ Pure LLM + Tools reasoning only")
print()
# Load questions and validation data
loader = GAIAQuestionLoaderWeb()
all_questions = loader.questions
validation_answers = load_validation_answers()
# Select 5 representative questions across different types
test_question_ids = [
"8e867cd7-cff9-4e6c-867a-ff5ddc2550be", # Research (Mercedes Sosa)
"a1e91b78-d3d8-4675-bb8d-62741b4b68a6", # Video Analysis (bird species)
"2d83110e-a098-4ebb-9987-066c06fa42d0", # Logic/Math (text reversal)
"cca530fc-4052-43b2-b130-b30968d8aa44", # Chess Analysis
"f918266a-b3e0-4914-865d-4faa564f1aef", # Python execution
]
test_questions = []
for q in all_questions:
if q.get('task_id') in test_question_ids:
test_questions.append(q)
print(f"β
Selected {len(test_questions)} test questions")
# Show questions
print(f"\nπ Test Questions:")
for i, q in enumerate(test_questions):
task_id = q.get('task_id', 'unknown')
question_preview = q.get('question', '')[:40] + "..."
expected = validation_answers.get(task_id, 'N/A')
print(f" {i+1}. {task_id[:8]}... β {expected}")
print(f" {question_preview}")
print(f"\nπ Starting quick clean test...")
# Process questions
start_time = time.time()
results = []
for i, question_data in enumerate(test_questions):
print(f"\nπ Progress: {i+1}/{len(test_questions)}")
result = test_single_question(question_data, validation_answers)
results.append(result)
end_time = time.time()
total_duration = end_time - start_time
# Analyze results
print(f"\n" + "=" * 50)
print(f"π QUICK CLEAN TEST RESULTS")
print(f"=" * 50)
# Calculate metrics
total_questions = len(results)
correct_answers = len([r for r in results if r['status'] == 'CORRECT'])
partial_answers = len([r for r in results if r['status'] == 'PARTIAL'])
incorrect_answers = len([r for r in results if r['status'] == 'INCORRECT'])
errors = len([r for r in results if r['status'] == 'ERROR'])
accuracy_rate = correct_answers / total_questions * 100
success_rate = (correct_answers + partial_answers) / total_questions * 100
print(f"β±οΈ Total Duration: {int(total_duration // 60)}m {int(total_duration % 60)}s")
print(f"β
**REAL ACCURACY: {accuracy_rate:.1f}%** ({correct_answers}/{total_questions})")
print(f"π― Success Rate: {success_rate:.1f}% (including partial)")
print(f"\nπ BREAKDOWN:")
print(f" β
CORRECT: {correct_answers}")
print(f" π‘ PARTIAL: {partial_answers}")
print(f" β INCORRECT: {incorrect_answers}")
print(f" π₯ ERROR: {errors}")
# Question-by-question results
print(f"\nπ DETAILED RESULTS:")
for i, result in enumerate(results):
status_icon = "β
" if result['status'] == "CORRECT" else "π‘" if result['status'] == "PARTIAL" else "β"
print(f" {i+1}. {status_icon} {result['question_type']:12} | {result['status']:9}")
print(f" Expected: {result['expected_answer']}")
print(f" Got: {result['our_answer']}")
if 'error' in result:
print(f" Error: {result['error']}")
# Final assessment
print(f"\nπ― HONEST ASSESSMENT:")
print(f"π« NO CHEATING - Pure LLM reasoning only")
print(f"π **Real System Accuracy: {accuracy_rate:.1f}%**")
if accuracy_rate >= 70:
print(f"π EXCELLENT: Achieves 70%+ target!")
elif accuracy_rate >= 50:
print(f"π§ GOOD: Solid performance, room for improvement")
elif accuracy_rate >= 30:
print(f"β οΈ MODERATE: Needs significant improvements")
else:
print(f"π¨ POOR: Requires major system overhaul")
return accuracy_rate, results
if __name__ == "__main__":
accuracy, results = run_quick_clean_test()
print(f"\nπ Quick clean test completed!")
print(f"π **REAL ACCURACY: {accuracy:.1f}%**")
print(f"π This is honest performance without any overrides!") |