File size: 14,507 Bytes
93de262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#!/usr/bin/env python3
"""
Classification Analyzer
Performance analysis by question classification to identify improvement areas.
"""

import json
import logging
from collections import defaultdict, Counter
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Tuple, Any
import statistics

class ClassificationAnalyzer:
    """Analyzer for performance metrics by question classification."""
    
    def __init__(self):
        """Initialize the classification analyzer."""
        self.logger = logging.getLogger("ClassificationAnalyzer")
        
    async def analyze_by_classification(self, results: Dict[str, Dict], session_dir: Path) -> Dict:
        """
        Analyze test results by question classification.
        
        Args:
            results: Test results keyed by question_id
            session_dir: Directory to save analysis results
            
        Returns:
            Classification analysis report
        """
        self.logger.info("Starting classification-based analysis...")
        
        # Organize results by classification
        classification_data = self.organize_by_classification(results)
        
        # Calculate performance metrics
        performance_metrics = self.calculate_performance_metrics(classification_data)
        
        # Analyze tool effectiveness
        tool_effectiveness = self.analyze_tool_effectiveness(classification_data)
        
        # Identify improvement areas
        improvement_areas = self.identify_improvement_areas(performance_metrics, tool_effectiveness)
        
        # Create comprehensive report
        analysis_report = {
            "analysis_timestamp": datetime.now().isoformat(),
            "total_questions": len(results),
            "classification_breakdown": self.get_classification_breakdown(classification_data),
            "performance_metrics": performance_metrics,
            "tool_effectiveness": tool_effectiveness,
            "improvement_areas": improvement_areas,
            "detailed_data": classification_data
        }
        
        # Save analysis report
        report_file = session_dir / "classification_analysis.json"
        with open(report_file, 'w') as f:
            json.dump(analysis_report, f, indent=2)
            
        self.logger.info(f"Classification analysis saved to: {report_file}")
        
        return analysis_report
        
    def organize_by_classification(self, results: Dict[str, Dict]) -> Dict[str, List[Dict]]:
        """Organize results by question classification."""
        classification_data = defaultdict(list)
        
        for question_id, result in results.items():
            # Get classification info
            classification = result.get('classification', {})
            primary_agent = classification.get('primary_agent', 'unknown')
            
            # Add to classification group
            classification_data[primary_agent].append({
                'question_id': question_id,
                'result': result,
                'classification': classification
            })
            
        return dict(classification_data)
        
    def calculate_performance_metrics(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, Dict]:
        """Calculate performance metrics for each classification."""
        metrics = {}
        
        for classification, questions in classification_data.items():
            # Accuracy metrics
            validation_statuses = []
            execution_times = []
            complexity_scores = []
            confidence_scores = []
            
            correct_count = 0
            partial_count = 0
            incorrect_count = 0
            timeout_count = 0
            error_count = 0
            
            for question_data in questions:
                result = question_data['result']
                classification_info = question_data['classification']
                
                # Validation status
                validation = result.get('validation', {})
                status = validation.get('validation_status', 'unknown')
                validation_statuses.append(status)
                
                if status == 'correct':
                    correct_count += 1
                elif status == 'partial':
                    partial_count += 1
                elif status == 'incorrect':
                    incorrect_count += 1
                    
                # Execution metrics
                solver_result = result.get('solver_result', {})
                if solver_result.get('status') == 'timeout':
                    timeout_count += 1
                elif solver_result.get('status') == 'error':
                    error_count += 1
                    
                # Timing
                exec_time = result.get('total_processing_time', 0)
                if exec_time > 0:
                    execution_times.append(exec_time)
                    
                # Classification metrics
                complexity = classification_info.get('complexity', 0)
                if complexity > 0:
                    complexity_scores.append(complexity)
                    
                confidence = classification_info.get('confidence', 0)
                if confidence > 0:
                    confidence_scores.append(confidence)
                    
            total_questions = len(questions)
            
            # Calculate metrics
            accuracy = correct_count / total_questions if total_questions > 0 else 0
            partial_rate = partial_count / total_questions if total_questions > 0 else 0
            error_rate = (error_count + timeout_count) / total_questions if total_questions > 0 else 0
            
            metrics[classification] = {
                "total_questions": total_questions,
                "accuracy": accuracy,
                "partial_accuracy": partial_rate,
                "error_rate": error_rate,
                "counts": {
                    "correct": correct_count,
                    "partial": partial_count,
                    "incorrect": incorrect_count,
                    "timeout": timeout_count,
                    "error": error_count
                },
                "execution_time": {
                    "mean": statistics.mean(execution_times) if execution_times else 0,
                    "median": statistics.median(execution_times) if execution_times else 0,
                    "max": max(execution_times) if execution_times else 0,
                    "min": min(execution_times) if execution_times else 0
                },
                "complexity": {
                    "mean": statistics.mean(complexity_scores) if complexity_scores else 0,
                    "distribution": Counter(complexity_scores)
                },
                "classification_confidence": {
                    "mean": statistics.mean(confidence_scores) if confidence_scores else 0,
                    "min": min(confidence_scores) if confidence_scores else 0
                }
            }
            
        return metrics
        
    def analyze_tool_effectiveness(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, Dict]:
        """Analyze tool effectiveness across classifications."""
        tool_usage = defaultdict(lambda: {
            'total_uses': 0,
            'successes': 0,
            'by_classification': defaultdict(lambda: {'uses': 0, 'successes': 0})
        })
        
        for classification, questions in classification_data.items():
            for question_data in questions:
                result = question_data['result']
                classification_info = question_data['classification']
                
                # Get tools needed
                tools_needed = classification_info.get('tools_needed', [])
                success = result.get('validation', {}).get('validation_status') == 'correct'
                
                for tool in tools_needed:
                    tool_usage[tool]['total_uses'] += 1
                    tool_usage[tool]['by_classification'][classification]['uses'] += 1
                    
                    if success:
                        tool_usage[tool]['successes'] += 1
                        tool_usage[tool]['by_classification'][classification]['successes'] += 1
                        
        # Calculate effectiveness rates
        tool_effectiveness = {}
        for tool, usage_data in tool_usage.items():
            total_uses = usage_data['total_uses']
            successes = usage_data['successes']
            
            effectiveness_rate = successes / total_uses if total_uses > 0 else 0
            
            # Per-classification effectiveness
            classification_effectiveness = {}
            for classification, class_data in usage_data['by_classification'].items():
                class_uses = class_data['uses']
                class_successes = class_data['successes']
                class_rate = class_successes / class_uses if class_uses > 0 else 0
                
                classification_effectiveness[classification] = {
                    'uses': class_uses,
                    'successes': class_successes,
                    'effectiveness_rate': class_rate
                }
                
            tool_effectiveness[tool] = {
                'total_uses': total_uses,
                'total_successes': successes,
                'overall_effectiveness': effectiveness_rate,
                'by_classification': classification_effectiveness
            }
            
        return tool_effectiveness
        
    def identify_improvement_areas(self, performance_metrics: Dict, tool_effectiveness: Dict) -> Dict[str, List[str]]:
        """Identify specific improvement areas based on analysis."""
        improvements = {
            "low_accuracy_classifications": [],
            "high_error_rate_classifications": [],
            "slow_processing_classifications": [],
            "ineffective_tools": [],
            "misclassified_questions": [],
            "recommendations": []
        }
        
        # Identify low accuracy classifications
        for classification, metrics in performance_metrics.items():
            accuracy = metrics['accuracy']
            error_rate = metrics['error_rate']
            avg_time = metrics['execution_time']['mean']
            
            if accuracy < 0.5:  # Less than 50% accuracy
                improvements["low_accuracy_classifications"].append({
                    "classification": classification,
                    "accuracy": accuracy,
                    "details": f"Only {accuracy:.1%} accuracy with {metrics['total_questions']} questions"
                })
                
            if error_rate > 0.3:  # More than 30% errors/timeouts
                improvements["high_error_rate_classifications"].append({
                    "classification": classification,
                    "error_rate": error_rate,
                    "details": f"{error_rate:.1%} error/timeout rate"
                })
                
            if avg_time > 600:  # More than 10 minutes average
                improvements["slow_processing_classifications"].append({
                    "classification": classification,
                    "avg_time": avg_time,
                    "details": f"Average {avg_time:.0f} seconds processing time"
                })
                
        # Identify ineffective tools
        for tool, effectiveness in tool_effectiveness.items():
            overall_rate = effectiveness['overall_effectiveness']
            total_uses = effectiveness['total_uses']
            
            if overall_rate < 0.4 and total_uses >= 3:  # Less than 40% effectiveness with meaningful usage
                improvements["ineffective_tools"].append({
                    "tool": tool,
                    "effectiveness": overall_rate,
                    "uses": total_uses,
                    "details": f"Only {overall_rate:.1%} success rate across {total_uses} uses"
                })
                
        # Generate recommendations
        recommendations = []
        
        if improvements["low_accuracy_classifications"]:
            worst_classification = min(improvements["low_accuracy_classifications"], 
                                     key=lambda x: x['accuracy'])
            recommendations.append(
                f"PRIORITY: Improve {worst_classification['classification']} agent "
                f"(currently {worst_classification['accuracy']:.1%} accuracy)"
            )
            
        if improvements["ineffective_tools"]:
            worst_tool = min(improvements["ineffective_tools"], 
                           key=lambda x: x['effectiveness'])
            recommendations.append(
                f"TOOL FIX: Revise {worst_tool['tool']} tool "
                f"(currently {worst_tool['effectiveness']:.1%} effectiveness)"
            )
            
        if improvements["high_error_rate_classifications"]:
            recommendations.append(
                "STABILITY: Address timeout and error handling for classifications with high error rates"
            )
            
        overall_accuracy = self.calculate_overall_accuracy(performance_metrics)
        if overall_accuracy < 0.7:
            recommendations.append(
                f"SYSTEM: Overall accuracy is {overall_accuracy:.1%} - target 70% for production readiness"
            )
            
        improvements["recommendations"] = recommendations
        
        return improvements
        
    def calculate_overall_accuracy(self, performance_metrics: Dict) -> float:
        """Calculate overall system accuracy across all classifications."""
        total_correct = 0
        total_questions = 0
        
        for metrics in performance_metrics.values():
            total_correct += metrics['counts']['correct']
            total_questions += metrics['total_questions']
            
        return total_correct / total_questions if total_questions > 0 else 0
        
    def get_classification_breakdown(self, classification_data: Dict[str, List[Dict]]) -> Dict[str, int]:
        """Get simple breakdown of question counts by classification."""
        return {
            classification: len(questions) 
            for classification, questions in classification_data.items()
        }