File size: 4,376 Bytes
ab854b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
# Ultralytics YOLO 🚀, AGPL-3.0 license
from pathlib import Path
from ultralytics import YOLO
from ultralytics.cfg import get_cfg
from ultralytics.engine.exporter import Exporter
from ultralytics.models.yolo import classify, detect, segment
from ultralytics.utils import ASSETS, DEFAULT_CFG, SETTINGS
CFG_DET = 'yolov8n.yaml'
CFG_SEG = 'yolov8n-seg.yaml'
CFG_CLS = 'yolov8n-cls.yaml' # or 'squeezenet1_0'
CFG = get_cfg(DEFAULT_CFG)
MODEL = Path(SETTINGS['weights_dir']) / 'yolov8n'
def test_func(*args): # noqa
print('callback test passed')
def test_export():
exporter = Exporter()
exporter.add_callback('on_export_start', test_func)
assert test_func in exporter.callbacks['on_export_start'], 'callback test failed'
f = exporter(model=YOLO(CFG_DET).model)
YOLO(f)(ASSETS) # exported model inference
def test_detect():
overrides = {'data': 'coco8.yaml', 'model': CFG_DET, 'imgsz': 32, 'epochs': 1, 'save': False}
CFG.data = 'coco8.yaml'
CFG.imgsz = 32
# Trainer
trainer = detect.DetectionTrainer(overrides=overrides)
trainer.add_callback('on_train_start', test_func)
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
trainer.train()
# Validator
val = detect.DetectionValidator(args=CFG)
val.add_callback('on_val_start', test_func)
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
val(model=trainer.best) # validate best.pt
# Predictor
pred = detect.DetectionPredictor(overrides={'imgsz': [64, 64]})
pred.add_callback('on_predict_start', test_func)
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
result = pred(source=ASSETS, model=f'{MODEL}.pt')
assert len(result), 'predictor test failed'
overrides['resume'] = trainer.last
trainer = detect.DetectionTrainer(overrides=overrides)
try:
trainer.train()
except Exception as e:
print(f'Expected exception caught: {e}')
return
Exception('Resume test failed!')
def test_segment():
overrides = {'data': 'coco8-seg.yaml', 'model': CFG_SEG, 'imgsz': 32, 'epochs': 1, 'save': False}
CFG.data = 'coco8-seg.yaml'
CFG.imgsz = 32
# YOLO(CFG_SEG).train(**overrides) # works
# trainer
trainer = segment.SegmentationTrainer(overrides=overrides)
trainer.add_callback('on_train_start', test_func)
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
trainer.train()
# Validator
val = segment.SegmentationValidator(args=CFG)
val.add_callback('on_val_start', test_func)
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
val(model=trainer.best) # validate best.pt
# Predictor
pred = segment.SegmentationPredictor(overrides={'imgsz': [64, 64]})
pred.add_callback('on_predict_start', test_func)
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
result = pred(source=ASSETS, model=f'{MODEL}-seg.pt')
assert len(result), 'predictor test failed'
# Test resume
overrides['resume'] = trainer.last
trainer = segment.SegmentationTrainer(overrides=overrides)
try:
trainer.train()
except Exception as e:
print(f'Expected exception caught: {e}')
return
Exception('Resume test failed!')
def test_classify():
overrides = {'data': 'imagenet10', 'model': CFG_CLS, 'imgsz': 32, 'epochs': 1, 'save': False}
CFG.data = 'imagenet10'
CFG.imgsz = 32
# YOLO(CFG_SEG).train(**overrides) # works
# Trainer
trainer = classify.ClassificationTrainer(overrides=overrides)
trainer.add_callback('on_train_start', test_func)
assert test_func in trainer.callbacks['on_train_start'], 'callback test failed'
trainer.train()
# Validator
val = classify.ClassificationValidator(args=CFG)
val.add_callback('on_val_start', test_func)
assert test_func in val.callbacks['on_val_start'], 'callback test failed'
val(model=trainer.best)
# Predictor
pred = classify.ClassificationPredictor(overrides={'imgsz': [64, 64]})
pred.add_callback('on_predict_start', test_func)
assert test_func in pred.callbacks['on_predict_start'], 'callback test failed'
result = pred(source=ASSETS, model=trainer.best)
assert len(result), 'predictor test failed'
|