Spaces:
Build error
Build error
File size: 6,477 Bytes
cb433d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Crop by word bounding box
# Locate script with gt.mat
# $ python crop_by_word_bb.py
import os
import re
import cv2
import scipy.io as sio
from itertools import chain
import numpy as np
import math
mat_contents = sio.loadmat('gt.mat')
image_names = mat_contents['imnames'][0]
cropped_indx = 0
start_img_indx = 0
gt_file = open('gt_oabc.txt', 'a')
err_file = open('err_oabc.txt', 'a')
for img_indx in range(start_img_indx, len(image_names)):
# Get image name
image_name_new = image_names[img_indx][0]
# print(image_name_new)
image_name = '/home/yxwang/pytorch/dataset/SynthText/img/'+ image_name_new
# print('IMAGE : {}.{}'.format(img_indx, image_name))
print('evaluating {} image'.format(img_indx), end='\r')
# Get text in image
txt = mat_contents['txt'][0][img_indx]
txt = [re.split(' \n|\n |\n| ', t.strip()) for t in txt]
txt = list(chain(*txt))
txt = [t for t in txt if len(t) > 0 ]
# print(txt) # ['Lines:', 'I', 'lost', 'Kevin', 'will', 'line', 'and', 'and', 'the', '(and', 'the', 'out', 'you', "don't", 'pkg']
# assert 1<0
# Open image
#img = Image.open(image_name)
img = cv2.imread(image_name, cv2.IMREAD_COLOR)
img_height, img_width, _ = img.shape
# Validation
if len(np.shape(mat_contents['wordBB'][0][img_indx])) == 2:
wordBBlen = 1
else:
wordBBlen = mat_contents['wordBB'][0][img_indx].shape[-1]
if wordBBlen == len(txt):
# Crop image and save
for word_indx in range(len(txt)):
# print('txt--',txt)
txt_temp = txt[word_indx]
len_now = len(txt_temp)
# txt_temp = re.sub('[^0-9a-zA-Z]+', '', txt_temp)
# print('txt_temp-1-',txt_temp)
txt_temp = re.sub('[^a-zA-Z]+', '', txt_temp)
# print('txt_temp-2-',txt_temp)
if len_now - len(txt_temp) != 0:
print('txt_temp-2-', txt_temp)
if len(np.shape(mat_contents['wordBB'][0][img_indx])) == 2: # only one word (2,4)
wordBB = mat_contents['wordBB'][0][img_indx]
else: # many words (2,4,num_words)
wordBB = mat_contents['wordBB'][0][img_indx][:, :, word_indx]
if np.shape(wordBB) != (2, 4):
err_log = 'malformed box index: {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
err_file.write(err_log)
# print(err_log)
continue
pts1 = np.float32([[wordBB[0][0], wordBB[1][0]],
[wordBB[0][3], wordBB[1][3]],
[wordBB[0][1], wordBB[1][1]],
[wordBB[0][2], wordBB[1][2]]])
height = math.sqrt((wordBB[0][0] - wordBB[0][3])**2 + (wordBB[1][0] - wordBB[1][3])**2)
width = math.sqrt((wordBB[0][0] - wordBB[0][1])**2 + (wordBB[1][0] - wordBB[1][1])**2)
# Coord validation check
if (height * width) <= 0:
err_log = 'empty file : {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
err_file.write(err_log)
# print(err_log)
continue
elif (height * width) > (img_height * img_width):
err_log = 'too big box : {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
err_file.write(err_log)
# print(err_log)
continue
else:
valid = True
for i in range(2):
for j in range(4):
if wordBB[i][j] < 0 or wordBB[i][j] > img.shape[1 - i]:
valid = False
break
if not valid:
break
if not valid:
err_log = 'invalid coord : {}\t{}\t{}\t{}\t{}\n'.format(
image_name, txt[word_indx], wordBB, (width, height), (img_width, img_height))
err_file.write(err_log)
# print(err_log)
continue
pts2 = np.float32([[0, 0],
[0, height],
[width, 0],
[width, height]])
x_min = np.int(round(min(wordBB[0][0], wordBB[0][1], wordBB[0][2], wordBB[0][3])))
x_max = np.int(round(max(wordBB[0][0], wordBB[0][1], wordBB[0][2], wordBB[0][3])))
y_min = np.int(round(min(wordBB[1][0], wordBB[1][1], wordBB[1][2], wordBB[1][3])))
y_max = np.int(round(max(wordBB[1][0], wordBB[1][1], wordBB[1][2], wordBB[1][3])))
# print(x_min, x_max, y_min, y_max)
# print(img.shape)
# assert 1<0
if len(img.shape) == 3:
img_cropped = img[ y_min:y_max:1, x_min:x_max:1, :]
else:
img_cropped = img[ y_min:y_max:1, x_min:x_max:1]
dir_name = '/home/yxwang/pytorch/dataset/SynthText/cropped-oabc/{}'.format(image_name_new.split('/')[0])
# print('dir_name--',dir_name)
if not os.path.exists(dir_name):
os.mkdir(dir_name)
cropped_file_name = "{}/{}_{}_{}.jpg".format(dir_name, cropped_indx,
image_name.split('/')[-1][:-len('.jpg')], word_indx)
# print('cropped_file_name--',cropped_file_name)
# print('img_cropped--',img_cropped.shape)
if img_cropped.shape[0] == 0 or img_cropped.shape[1] == 0:
err_log = 'word_box_mismatch : {}\t{}\t{}\n'.format(image_name, mat_contents['txt'][0][
img_indx], mat_contents['wordBB'][0][img_indx])
err_file.write(err_log)
# print(err_log)
continue
# print('img_cropped--',img_cropped)
# img_cropped.save(cropped_file_name)
cv2.imwrite(cropped_file_name, img_cropped)
cropped_indx += 1
gt_file.write('%s\t%s\n' % (cropped_file_name, txt[word_indx]))
# if cropped_indx>10:
# assert 1<0
# assert 1 < 0
else:
err_log = 'word_box_mismatch : {}\t{}\t{}\n'.format(image_name, mat_contents['txt'][0][
img_indx], mat_contents['wordBB'][0][img_indx])
err_file.write(err_log)
# print(err_log)
gt_file.close()
err_file.close()
|