File size: 6,477 Bytes
cb433d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Crop by word bounding box
# Locate script with gt.mat
# $ python crop_by_word_bb.py

import os
import re
import cv2
import scipy.io as sio
from itertools import chain
import numpy as np
import math

mat_contents = sio.loadmat('gt.mat')

image_names = mat_contents['imnames'][0]
cropped_indx = 0
start_img_indx = 0
gt_file = open('gt_oabc.txt', 'a')
err_file = open('err_oabc.txt', 'a')

for img_indx in range(start_img_indx, len(image_names)):


    # Get image name
    image_name_new = image_names[img_indx][0]
    # print(image_name_new)
    image_name = '/home/yxwang/pytorch/dataset/SynthText/img/'+ image_name_new
    # print('IMAGE : {}.{}'.format(img_indx, image_name))
    print('evaluating {} image'.format(img_indx), end='\r')
    # Get text in image
    txt = mat_contents['txt'][0][img_indx]
    txt = [re.split(' \n|\n |\n| ', t.strip()) for t in txt]
    txt = list(chain(*txt))
    txt = [t for t in txt if len(t) > 0 ]
    # print(txt) # ['Lines:', 'I', 'lost', 'Kevin', 'will', 'line', 'and', 'and', 'the', '(and', 'the', 'out', 'you', "don't", 'pkg']
    # assert 1<0

    # Open image
    #img = Image.open(image_name)
    img = cv2.imread(image_name, cv2.IMREAD_COLOR)
    img_height, img_width, _ = img.shape

    # Validation
    if len(np.shape(mat_contents['wordBB'][0][img_indx])) == 2:
        wordBBlen = 1
    else:
        wordBBlen = mat_contents['wordBB'][0][img_indx].shape[-1]

    if wordBBlen == len(txt):
        # Crop image and save
        for word_indx in range(len(txt)):
            # print('txt--',txt)
            txt_temp = txt[word_indx]
            len_now = len(txt_temp)
            # txt_temp = re.sub('[^0-9a-zA-Z]+', '', txt_temp)
            # print('txt_temp-1-',txt_temp)
            txt_temp = re.sub('[^a-zA-Z]+', '', txt_temp)
            # print('txt_temp-2-',txt_temp)
            if len_now - len(txt_temp) != 0:
                print('txt_temp-2-', txt_temp)

            if len(np.shape(mat_contents['wordBB'][0][img_indx])) == 2:  # only one word (2,4)
                wordBB = mat_contents['wordBB'][0][img_indx]
            else:  # many words (2,4,num_words)
                wordBB = mat_contents['wordBB'][0][img_indx][:, :, word_indx]

            if np.shape(wordBB) != (2, 4):
                err_log = 'malformed box index: {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
                err_file.write(err_log)
                # print(err_log)
                continue

            pts1 = np.float32([[wordBB[0][0], wordBB[1][0]],
                               [wordBB[0][3], wordBB[1][3]],
                               [wordBB[0][1], wordBB[1][1]],
                               [wordBB[0][2], wordBB[1][2]]])
            height = math.sqrt((wordBB[0][0] - wordBB[0][3])**2 + (wordBB[1][0] - wordBB[1][3])**2)
            width = math.sqrt((wordBB[0][0] - wordBB[0][1])**2 + (wordBB[1][0] - wordBB[1][1])**2)

            # Coord validation check
            if (height * width) <= 0:
                err_log = 'empty file : {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
                err_file.write(err_log)
                # print(err_log)
                continue
            elif (height * width) > (img_height * img_width):
                err_log = 'too big box : {}\t{}\t{}\n'.format(image_name, txt[word_indx], wordBB)
                err_file.write(err_log)
                # print(err_log)
                continue
            else:
                valid = True
                for i in range(2):
                    for j in range(4):
                        if wordBB[i][j] < 0 or wordBB[i][j] > img.shape[1 - i]:
                            valid = False
                            break
                    if not valid:
                        break
                if not valid:
                    err_log = 'invalid coord : {}\t{}\t{}\t{}\t{}\n'.format(
                        image_name, txt[word_indx], wordBB, (width, height), (img_width, img_height))
                    err_file.write(err_log)
                    # print(err_log)
                    continue

            pts2 = np.float32([[0, 0],
                               [0, height],
                               [width, 0],
                               [width, height]])

            x_min = np.int(round(min(wordBB[0][0], wordBB[0][1], wordBB[0][2], wordBB[0][3])))
            x_max = np.int(round(max(wordBB[0][0], wordBB[0][1], wordBB[0][2], wordBB[0][3])))
            y_min = np.int(round(min(wordBB[1][0], wordBB[1][1], wordBB[1][2], wordBB[1][3])))
            y_max = np.int(round(max(wordBB[1][0], wordBB[1][1], wordBB[1][2], wordBB[1][3])))
            # print(x_min, x_max, y_min, y_max)
            # print(img.shape)
            # assert 1<0
            if len(img.shape) == 3:
                img_cropped = img[ y_min:y_max:1, x_min:x_max:1, :]
            else:
                img_cropped = img[ y_min:y_max:1, x_min:x_max:1]
            dir_name = '/home/yxwang/pytorch/dataset/SynthText/cropped-oabc/{}'.format(image_name_new.split('/')[0])
            # print('dir_name--',dir_name)
            if not os.path.exists(dir_name):
                os.mkdir(dir_name)
            cropped_file_name = "{}/{}_{}_{}.jpg".format(dir_name, cropped_indx,
                                                         image_name.split('/')[-1][:-len('.jpg')], word_indx)
            # print('cropped_file_name--',cropped_file_name)
            # print('img_cropped--',img_cropped.shape)
            if img_cropped.shape[0] == 0 or img_cropped.shape[1] == 0:
                err_log = 'word_box_mismatch : {}\t{}\t{}\n'.format(image_name, mat_contents['txt'][0][
                    img_indx], mat_contents['wordBB'][0][img_indx])
                err_file.write(err_log)
                # print(err_log)
                continue
            # print('img_cropped--',img_cropped)

            # img_cropped.save(cropped_file_name)
            cv2.imwrite(cropped_file_name, img_cropped)
            cropped_indx += 1
            gt_file.write('%s\t%s\n' % (cropped_file_name, txt[word_indx]))

            # if cropped_indx>10:
            #     assert 1<0
        # assert 1 < 0
    else:
        err_log = 'word_box_mismatch : {}\t{}\t{}\n'.format(image_name, mat_contents['txt'][0][
                                                            img_indx], mat_contents['wordBB'][0][img_indx])
        err_file.write(err_log)
        # print(err_log)
gt_file.close()
err_file.close()