File size: 12,097 Bytes
cb433d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import logging
import re

import cv2
import lmdb
import six
from fastai.vision import *
from torchvision import transforms

from transforms import CVColorJitter, CVDeterioration, CVGeometry
from utils import CharsetMapper, onehot


class ImageDataset(Dataset):
    "`ImageDataset` read data from LMDB database."

    def __init__(self,
                 path:PathOrStr,
                 is_training:bool=True,
                 img_h:int=32,
                 img_w:int=100,
                 max_length:int=25,
                 check_length:bool=True,
                 case_sensitive:bool=False,
                 charset_path:str='data/charset_36.txt',
                 convert_mode:str='RGB',
                 data_aug:bool=True,
                 deteriorate_ratio:float=0.,
                 multiscales:bool=True,
                 one_hot_y:bool=True,
                 return_idx:bool=False,
                 return_raw:bool=False,
                 **kwargs):
        self.path, self.name = Path(path), Path(path).name
        assert self.path.is_dir() and self.path.exists(), f"{path} is not a valid directory."
        self.convert_mode, self.check_length = convert_mode, check_length
        self.img_h, self.img_w = img_h, img_w
        self.max_length, self.one_hot_y = max_length, one_hot_y
        self.return_idx, self.return_raw = return_idx, return_raw
        self.case_sensitive, self.is_training = case_sensitive, is_training
        self.data_aug, self.multiscales = data_aug, multiscales
        self.charset = CharsetMapper(charset_path, max_length=max_length+1)
        self.c = self.charset.num_classes

        self.env = lmdb.open(str(path), readonly=True, lock=False, readahead=False, meminit=False)
        assert self.env, f'Cannot open LMDB dataset from {path}.'
        with self.env.begin(write=False) as txn:
            self.length = int(txn.get('num-samples'.encode()))

        if self.is_training and self.data_aug:
            self.augment_tfs = transforms.Compose([
                CVGeometry(degrees=45, translate=(0.0, 0.0), scale=(0.5, 2.), shear=(45, 15), distortion=0.5, p=0.5),
                CVDeterioration(var=20, degrees=6, factor=4, p=0.25),
                CVColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1, p=0.25)
            ])
        self.totensor = transforms.ToTensor()
    
    def __len__(self): return self.length

    def _next_image(self, index):
        next_index = random.randint(0, len(self) - 1)
        return self.get(next_index)

    def _check_image(self, x, pixels=6):
        if x.size[0] <= pixels or x.size[1] <= pixels: return False
        else: return True

    def resize_multiscales(self, img, borderType=cv2.BORDER_CONSTANT): 
        def _resize_ratio(img, ratio, fix_h=True):
            if ratio * self.img_w < self.img_h:
                if fix_h: trg_h = self.img_h
                else: trg_h = int(ratio * self.img_w)
                trg_w = self.img_w
            else: trg_h, trg_w = self.img_h, int(self.img_h / ratio)
            img = cv2.resize(img, (trg_w, trg_h))
            pad_h, pad_w = (self.img_h - trg_h) / 2, (self.img_w - trg_w) / 2
            top, bottom = math.ceil(pad_h), math.floor(pad_h)
            left, right = math.ceil(pad_w), math.floor(pad_w)
            img = cv2.copyMakeBorder(img, top, bottom, left, right, borderType)
            return img
        
        if self.is_training: 
            if random.random() < 0.5:
                base, maxh, maxw = self.img_h, self.img_h, self.img_w
                h, w = random.randint(base, maxh), random.randint(base, maxw)
                return _resize_ratio(img, h/w)
            else: return _resize_ratio(img, img.shape[0] / img.shape[1])  # keep aspect ratio
        else:  return _resize_ratio(img, img.shape[0] / img.shape[1])  # keep aspect ratio

    def resize(self, img):
        if self.multiscales: return self.resize_multiscales(img, cv2.BORDER_REPLICATE)
        else: return cv2.resize(img, (self.img_w, self.img_h))
         
    def get(self, idx):
        with self.env.begin(write=False) as txn:
            image_key, label_key = f'image-{idx+1:09d}', f'label-{idx+1:09d}'
            try:
                label = str(txn.get(label_key.encode()), 'utf-8')  # label
                label = re.sub('[^0-9a-zA-Z]+', '', label)
                if self.check_length and self.max_length > 0:
                    if len(label) > self.max_length or len(label) <= 0:
                        #logging.info(f'Long or short text image is found: {self.name}, {idx}, {label}, {len(label)}')
                        return self._next_image(idx)
                label = label[:self.max_length]

                imgbuf = txn.get(image_key.encode())  # image
                buf = six.BytesIO()
                buf.write(imgbuf)
                buf.seek(0)
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore", UserWarning) # EXIF warning from TiffPlugin
                    image = PIL.Image.open(buf).convert(self.convert_mode)
                if self.is_training and not self._check_image(image):
                    #logging.info(f'Invalid image is found: {self.name}, {idx}, {label}, {len(label)}')
                    return self._next_image(idx)
            except:
                import traceback
                traceback.print_exc()
                logging.info(f'Corrupted image is found: {self.name}, {idx}, {label}, {len(label)}')
                return self._next_image(idx)
            return image, label, idx

    def _process_training(self, image):
        if self.data_aug: image = self.augment_tfs(image)
        image = self.resize(np.array(image))
        return image

    def _process_test(self, image):
        return self.resize(np.array(image)) # TODO:move is_training to here

    def __getitem__(self, idx):
        image, text, idx_new = self.get(idx)
        if not self.is_training: assert idx == idx_new, f'idx {idx} != idx_new {idx_new} during testing.'

        if self.is_training: image = self._process_training(image)
        else: image = self._process_test(image)
        if self.return_raw: return image, text
        image = self.totensor(image)

        length = tensor(len(text) + 1).to(dtype=torch.long)  # one for end token
        label = self.charset.get_labels(text, case_sensitive=self.case_sensitive)
        label = tensor(label).to(dtype=torch.long)
        if self.one_hot_y: label = onehot(label, self.charset.num_classes)

        if self.return_idx: y = [label, length, idx_new]
        else: y = [label, length]
        return image, y


class TextDataset(Dataset):
    def __init__(self,
                 path:PathOrStr, 
                 delimiter:str='\t',
                 max_length:int=25, 
                 charset_path:str='data/charset_36.txt', 
                 case_sensitive=False, 
                 one_hot_x=True,
                 one_hot_y=True,
                 is_training=True,
                 smooth_label=False,
                 smooth_factor=0.2,
                 use_sm=False,
                 **kwargs):
        self.path = Path(path)
        self.case_sensitive, self.use_sm = case_sensitive, use_sm
        self.smooth_factor, self.smooth_label = smooth_factor, smooth_label
        self.charset = CharsetMapper(charset_path, max_length=max_length+1)
        self.one_hot_x, self.one_hot_y, self.is_training = one_hot_x, one_hot_y, is_training
        if self.is_training and self.use_sm: self.sm = SpellingMutation(charset=self.charset)

        dtype = {'inp': str, 'gt': str}
        self.df = pd.read_csv(self.path, dtype=dtype, delimiter=delimiter, na_filter=False)
        self.inp_col, self.gt_col = 0, 1

    def __len__(self): return len(self.df)

    def __getitem__(self, idx):
        text_x = self.df.iloc[idx, self.inp_col]
        text_x = re.sub('[^0-9a-zA-Z]+', '', text_x)
        if not self.case_sensitive: text_x = text_x.lower()
        if self.is_training and self.use_sm: text_x = self.sm(text_x)

        length_x = tensor(len(text_x) + 1).to(dtype=torch.long)  # one for end token
        label_x = self.charset.get_labels(text_x, case_sensitive=self.case_sensitive)
        label_x = tensor(label_x)
        if self.one_hot_x:
            label_x = onehot(label_x, self.charset.num_classes)
            if self.is_training and self.smooth_label: 
                label_x = torch.stack([self.prob_smooth_label(l) for l in label_x])
        x =  [label_x, length_x]
    
        text_y = self.df.iloc[idx, self.gt_col]
        text_y = re.sub('[^0-9a-zA-Z]+', '', text_y)
        if not self.case_sensitive: text_y = text_y.lower()
        length_y = tensor(len(text_y) + 1).to(dtype=torch.long)  # one for end token
        label_y = self.charset.get_labels(text_y, case_sensitive=self.case_sensitive)
        label_y = tensor(label_y)
        if self.one_hot_y: label_y = onehot(label_y, self.charset.num_classes)
        y = [label_y, length_y]

        return x, y

    def prob_smooth_label(self, one_hot):
        one_hot = one_hot.float()
        delta = torch.rand([]) * self.smooth_factor
        num_classes = len(one_hot)
        noise = torch.rand(num_classes)
        noise = noise / noise.sum() * delta
        one_hot = one_hot * (1 - delta) + noise
        return one_hot


class SpellingMutation(object):
    def __init__(self, pn0=0.7, pn1=0.85, pn2=0.95, pt0=0.7, pt1=0.85, charset=None):
        """ 
        Args:
            pn0: the prob of not modifying characters is (pn0)
            pn1: the prob of modifying one characters is (pn1 - pn0)
            pn2: the prob of modifying two characters is (pn2 - pn1), 
                 and three (1 - pn2)
            pt0: the prob of replacing operation is pt0.
            pt1: the prob of inserting operation is (pt1 - pt0),
                 and deleting operation is (1 - pt1)
        """
        super().__init__()
        self.pn0, self.pn1, self.pn2 = pn0, pn1, pn2
        self.pt0, self.pt1 = pt0, pt1
        self.charset = charset
        logging.info(f'the probs: pn0={self.pn0}, pn1={self.pn1} ' + 
                     f'pn2={self.pn2}, pt0={self.pt0}, pt1={self.pt1}')

    def is_digit(self, text, ratio=0.5):
        length = max(len(text), 1)
        digit_num = sum([t in self.charset.digits for t in text])
        if digit_num / length < ratio: return False
        return True

    def is_unk_char(self, char):
        # return char == self.charset.unk_char
        return (char not in self.charset.digits) and (char not in self.charset.alphabets)

    def get_num_to_modify(self, length):
        prob = random.random()
        if prob < self.pn0: num_to_modify = 0
        elif prob < self.pn1: num_to_modify = 1
        elif prob < self.pn2: num_to_modify = 2
        else: num_to_modify = 3
        
        if length <= 1: num_to_modify = 0
        elif length >= 2 and length <= 4: num_to_modify = min(num_to_modify, 1)
        else: num_to_modify = min(num_to_modify, length // 2)  # smaller than length // 2
        return num_to_modify

    def __call__(self, text, debug=False):
        if self.is_digit(text): return text
        length = len(text)
        num_to_modify = self.get_num_to_modify(length)
        if num_to_modify <= 0: return text

        chars = []
        index = np.arange(0, length)
        random.shuffle(index)
        index = index[: num_to_modify]
        if debug: self.index = index
        for i, t in enumerate(text):
            if i not in index: chars.append(t)
            elif self.is_unk_char(t): chars.append(t)
            else:
                prob = random.random()
                if prob < self.pt0: # replace
                    chars.append(random.choice(self.charset.alphabets))
                elif prob < self.pt1: # insert
                    chars.append(random.choice(self.charset.alphabets))
                    chars.append(t)
                else: # delete
                    continue
        new_text = ''.join(chars[: self.charset.max_length-1])
        return new_text if len(new_text) >= 1 else text