Spaces:
Runtime error
Runtime error
File size: 9,541 Bytes
0d215ca e532db6 0a53800 0d215ca c694998 40403b0 b2d556d f203ba6 5fcdcad 7e6795e 2ab9fff 7e6795e b2d556d 7e6795e 3442116 7e6795e 0d215ca 7e6795e 40403b0 7e6795e f79758c 663656c f203ba6 0a53800 f203ba6 0a53800 7e6795e de0b08b 7e6795e 5fcdcad 7e6795e de0b08b 0d215ca de0b08b 7e6795e de0b08b 7e6795e de0b08b 7e6795e de0b08b 0d215ca de0b08b 0d215ca de0b08b 7e6795e de0b08b 5e48162 de0b08b 7e6795e de0b08b 7e6795e de0b08b 7e6795e de0b08b a531b86 de0b08b 7e6795e de0b08b 7e6795e de0b08b 7e6795e de0b08b 5fcdcad de0b08b 5fcdcad de0b08b 7e6795e de0b08b 7e6795e 5fcdcad 7e6795e de0b08b 7e6795e de0b08b 7e6795e 5fcdcad 7e6795e de0b08b 7e6795e c694998 7e6795e c694998 7e6795e df71374 7e6795e 40403b0 7e6795e 5e48162 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import streamlit as st
import requests
import time
from ast import literal_eval
from datetime import datetime
def to_md(text):
# return text.replace("\n", "<br />")
return text.replace("\n", "<br />")
@st.cache
def infer(
prompt,
model_name,
max_new_tokens=10,
temperature=0.1,
top_p=1.0,
top_k=40,
num_completions=1,
seed=42,
stop="\n"
):
model_name_map = {
"GPT-JT-6B-v1": "Together-gpt-JT-6B-v1",
}
max_new_tokens = int(max_new_tokens)
num_completions = int(num_completions)
temperature = float(temperature)
top_p = float(top_p)
stop = stop.split(";")
seed = seed
assert 0 <= max_new_tokens <= 256
assert 1 <= num_completions <= 5
assert 0.0 <= temperature <= 10.0
assert 0.0 <= top_p <= 1.0
if temperature == 0.0:
temperature = 0.01
if prompt=="":
prompt = " "
my_post_dict = {
"model": "Together-gpt-JT-6B-v1",
"prompt": prompt,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"max_tokens": max_new_tokens,
"stop": stop,
}
print(f"send: {datetime.now()}")
response = requests.get("https://staging.together.xyz/api/inference", params=my_post_dict).json()
generated_text = response['output']['choices'][0]['text']
print(f"recv: {datetime.now()}")
for stop_word in stop:
if stop_word != '' and stop_word in generated_text:
generated_text = generated_text[:generated_text.find(stop_word)]
return generated_text
def set_preset():
if st.session_state.preset == "Question Answering":
st.session_state.prompt = '''
Please answer the following question:
Question: What is the capital of Canada?
Answer: Ottawa
Question: What is the currency of Switzerland?
Answer: Swiss franc
Question: In which country is Wisconsin located?
Answer:
'''.strip()
st.session_state.temperature = "0.0"
st.session_state.top_p = "1.0"
st.session_state.max_new_tokens = "5"
st.session_state.stop = r'\n'
elif st.session_state.preset == "Sentiment Analysis":
st.session_state.prompt = '''
Label the tweets as either "positive", "negative", "mixed", or "neutral":
Tweet: I can say that there isn't anything I would change.
Label: positive
Tweet: I'm not sure about this.
Label: neutral
Tweet: I liked some parts but I didn't like other parts.
Label: mixed
Tweet: I think the background image could have been better.
Label: negative
Tweet I really like it.
Label:
'''.strip()
st.session_state.temperature = "0.0"
st.session_state.top_p = "1.0"
st.session_state.max_new_tokens = "2"
st.session_state.stop = r'\n'
elif st.session_state.preset == "Topic Classification":
st.session_state.prompt = '''
Given a news article, classify its topic.
Possible labels: 1. World 2. Sports 3. Business 4. Sci/Tech
Article: A nearby star thought to harbor comets and asteroids now appears to be home to planets, too.
Label: Sci/Tech
Article: Soaring crude prices plus worries about the economy and the outlook for earnings are expected to hang over the stock market next week during the depth of the summer doldrums.
Label: Business
Article: Murtagh a stickler for success Northeastern field hockey coach Cheryl Murtagh doesn't want the glare of the spotlight that shines on her to detract from a team that has been the America East champion for the past three years and has been to the NCAA tournament 13 times.
Label:
'''.strip()
st.session_state.temperature = "0.0"
st.session_state.top_p = "1.0"
st.session_state.max_new_tokens = "5"
st.session_state.stop = r'\n'
elif st.session_state.preset == "Paraphrasing":
st.session_state.prompt = '''
Paraphrase the given sentence into a different sentence.
Input: Can you recommed some upscale restaurants in New York?
Output: What upscale restaurants do you recommend in New York?
Input: What are the famous places we should not miss in Paris?
Output: Recommend some of the best places to visit in Paris?
Input: Could you recommed some hotels that have cheap price in Zurich?
Output:
'''.strip()
st.session_state.temperature = "0.8"
st.session_state.top_p = "1.0"
st.session_state.max_new_tokens = "20"
st.session_state.stop = r'\n'
elif st.session_state.preset == "Text Summarization":
st.session_state.prompt = '''
Given a review from Amazon's food products, the task is to generate a short summary of the given review in the input.
Input: I have bought several of the Vitality canned dog food products and have found them all to be of good quality. The product looks more like a stew than a processed meat and it smells better. My Labrador is finicky and she appreciates this product better than most.
Output: Good Quality Dog Food
Input: Product arrived labeled as Jumbo Salted Peanuts...the peanuts were actually small sized unsalted. Not sure if this was an error or if the vendor intended to represent the product as 'Jumbo'.
Output: Not as Advertised
Input: Wolfgang Puck recently changed their Chicken soup. The old stuff is excellent. The new stuff is watered down, not filling and doesn't taste as good. The image and description on this item stated that it was the old soup. The soup I received is the new stuff. Being a food item, returns are not allowed. I feel this was false advertizing and am extremely displeased.
Output:
'''.strip()
st.session_state.temperature = "0.0"
st.session_state.top_p = "1.0"
st.session_state.max_new_tokens = "10"
st.session_state.stop = r'\n'
elif st.session_state.preset == "Word Sense Disambiguation":
st.session_state.prompt = '''
Identify which sense of a word is meant in a given context.
Context: The river overflowed the bank.
Word: bank
Sense: river bank
Context: A mouse takes much more room than a trackball.
Word: mouse
Sense: computer mouse
Context: The bank will not be accepting cash on Saturdays.
Word: bank
Sense: commercial (finance) banks
Context: Bill killed the project
Word: kill
Sense:
'''.strip()
st.session_state.temperature = "0.0"
st.session_state.top_p = "1.0"
st.session_state.max_new_tokens = "10"
st.session_state.stop = r'\n'
elif st.session_state.preset == "Natural Language Inference":
st.session_state.prompt = '''
Given a pair of sentences, choose whether the two sentences agree (entailment)/disagree (contradiction) with each other.
Possible labels: 1. entailment 2. contradiction
Sentence 1: The skier was on the edge of the ramp. Sentence 2: The skier was dressed in winter clothes.
Label: entailment
Sentence 1: The boy skated down the staircase railing. Sentence 2: The boy is a newbie skater.
Label: contradiction
Sentence 1: Two middle-aged people stand by a golf hole. Sentence 2: A couple riding in a golf cart.
Label:
'''.strip()
st.session_state.temperature = "0.0"
st.session_state.top_p = "1.0"
st.session_state.max_new_tokens = "2"
st.session_state.stop = r'\n'
else:
pass
def main():
if 'preset' not in st.session_state:
st.session_state.preset = "Sentiment Analysis"
st.session_state.top_k = "40"
st.session_state.stop = r'\n'
set_preset()
st.title("GPT-JT")
col1, col2 = st.columns([1, 3])
with col1:
model_name = st.selectbox("Model", ["GPT-JT-6B-v1"])
max_new_tokens = st.text_input('Max new tokens', st.session_state.max_new_tokens)
temperature = st.text_input('temperature', st.session_state.temperature)
top_k = st.text_input('top_k', st.session_state.top_k)
top_p = st.text_input('top_p', st.session_state.top_p)
# num_completions = st.text_input('num_completions (only the best one will be returend)', "1")
num_completions = "1"
stop = st.text_input('stop, split by;', st.session_state.stop)
# seed = st.text_input('seed', "42")
seed = "42"
with col2:
preset = st.selectbox(
label="Examples",
options=('Question Answering', 'Sentiment Analysis',
"Topic Classification", "Paraphrasing", "Text Summarization",
"Word Sense Disambiguation", "Natural Language Inference"),
on_change=set_preset,
key="preset",
)
prompt_area = st.empty()
prompt = prompt_area.text_area(
"Prompt",
value=st.session_state.prompt,
max_chars=4096,
height=500,
)
generated_area = st.empty()
generated_area.markdown("(Generate here)")
button_submit = st.button("Submit")
if button_submit:
generated_area.markdown("<b>" + to_md(prompt) + "</b>", unsafe_allow_html=True)
report_text = infer(
prompt, model_name=model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p, top_k=top_k,
num_completions=num_completions, seed=seed, stop=literal_eval("'''"+stop+"'''"),
)
generated_area.markdown("<b>" + to_md(prompt) + "</b><mark style='background-color: #cbeacd'>" + to_md(report_text)+"</mark>", unsafe_allow_html=True)
if __name__ == '__main__':
main() |