xzyao commited on
Commit
f203ba6
1 Parent(s): e3b7503

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +21 -35
app.py CHANGED
@@ -1,56 +1,42 @@
1
  import streamlit as st
2
  import requests
3
- import asyncio
4
  import time
5
  from ast import literal_eval
6
- import urllib.parse
7
- from dacite import from_dict
8
- from together_web3.computer import LanguageModelInferenceRequest
9
- from together_web3.together import TogetherWeb3
10
-
11
- st.title("GPT-JT")
12
- if 'together_web3' not in st.session_state:
13
- st.session_state.together_web3 = TogetherWeb3()
14
- if 'loop' not in st.session_state:
15
- st.session_state.loop = asyncio.new_event_loop()
16
- async def _inference(prompt, max_tokens, stop, top_p, temperature, seed):
17
- result = await st.session_state.together_web3.language_model_inference(
18
- from_dict(
19
- data_class=LanguageModelInferenceRequest,
20
- data={
21
- "model": "Together-gpt-JT-6B-v1",
22
- "max_tokens": max_tokens,
23
- "prompt": prompt,
24
- "stop": stop,
25
- "top_p": top_p,
26
- "temperature": temperature,
27
- "seed": seed,
28
- }
29
- ),
30
- )
31
- return result
32
 
33
  @st.cache
34
  def infer(prompt,
35
  model_name,
36
  max_new_tokens=10,
37
- temperature=1.0,
38
  top_p=1.0,
39
  num_completions=1,
40
  seed=42,
41
  stop="\n"):
42
- print("prompt", prompt)
43
- stop = stop.split(";")
44
- response = st.session_state.loop.run_until_complete(_inference(prompt, int(max_new_tokens), stop, float(top_p), float(temperature), int(seed)))
45
- print(response)
46
- return response.choices[0].text
 
 
 
 
 
 
 
 
 
 
 
47
 
 
 
48
  col1, col2 = st.columns([1, 3])
49
 
50
  with col1:
51
  model_name = st.selectbox("Model", ["GPT-JT-6B-v1"])
52
  max_new_tokens = st.text_input('Max new tokens', "10")
53
- temperature = st.text_input('temperature', "1.0")
54
  top_p = st.text_input('top_p', "1.0")
55
  num_completions = st.text_input('num_completions (only the best one will be returend)', "1")
56
  stop = st.text_input('stop, split by;', r'\n')
@@ -76,4 +62,4 @@ with col2:
76
  prompt, model_name=model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p,
77
  num_completions=num_completions, seed=seed, stop=literal_eval("'''"+stop+"'''"),
78
  )
79
- generated_area.text(prompt + report_text)
 
1
  import streamlit as st
2
  import requests
 
3
  import time
4
  from ast import literal_eval
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  @st.cache
7
  def infer(prompt,
8
  model_name,
9
  max_new_tokens=10,
10
+ temperature=0.0,
11
  top_p=1.0,
12
  num_completions=1,
13
  seed=42,
14
  stop="\n"):
15
+
16
+ model_name_map = {
17
+ "GPT-JT-6B-v1": "Together-gpt-JT-6B-v1",
18
+ }
19
+
20
+ my_post_dict = {
21
+ "model": "Together-gpt-JT-6B-v1",
22
+ "prompt": prompt,
23
+ "top_p": float(top_p),
24
+ "temperature": float(temperature),
25
+ "max_tokens": int(max_new_tokens),
26
+ "stop": stop.split(";")
27
+ }
28
+ response = requests.get("https://staging.together.xyz/api/inference", params=my_post_dict).json()
29
+ return response['output']['choices'][0]['text']
30
+
31
 
32
+ st.title("GPT-JT")
33
+
34
  col1, col2 = st.columns([1, 3])
35
 
36
  with col1:
37
  model_name = st.selectbox("Model", ["GPT-JT-6B-v1"])
38
  max_new_tokens = st.text_input('Max new tokens', "10")
39
+ temperature = st.text_input('temperature', "0.0")
40
  top_p = st.text_input('top_p', "1.0")
41
  num_completions = st.text_input('num_completions (only the best one will be returend)', "1")
42
  stop = st.text_input('stop, split by;', r'\n')
 
62
  prompt, model_name=model_name, max_new_tokens=max_new_tokens, temperature=temperature, top_p=top_p,
63
  num_completions=num_completions, seed=seed, stop=literal_eval("'''"+stop+"'''"),
64
  )
65
+ generated_area.text(prompt + report_text)