File size: 11,635 Bytes
47d95c0
bb20f6e
 
759caee
 
6dc443d
759caee
bb20f6e
 
5f1cd98
 
6dc443d
bb20f6e
5f1cd98
 
bb20f6e
09980bd
 
bb20f6e
5f1cd98
 
09980bd
6bce319
5f1cd98
 
 
 
 
 
bb20f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47d95c0
bb20f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
759caee
 
 
bb20f6e
759caee
bb20f6e
 
5f1cd98
 
 
 
 
 
bb20f6e
 
 
 
 
759caee
bb20f6e
 
5f1cd98
bb20f6e
99e8682
b4ee158
bb20f6e
 
 
 
 
5f1cd98
bb20f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf689ce
bb20f6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1cd98
bb20f6e
 
 
bba27b9
 
 
 
 
 
 
 
 
 
bb20f6e
 
 
3e38893
 
759caee
 
 
 
 
 
99e8682
 
759caee
bb20f6e
 
759caee
 
 
 
 
3e38893
bb20f6e
 
 
 
 
 
d3a6c3b
bb20f6e
 
 
 
 
 
 
 
759caee
 
 
 
 
 
bb20f6e
 
 
 
 
 
2c15128
bb20f6e
 
 
 
 
 
 
 
3e38893
759caee
 
 
 
 
 
bb20f6e
bba27b9
bb20f6e
 
 
 
 
 
 
 
 
 
 
 
09980bd
bba27b9
 
 
 
39f5339
bba27b9
 
 
8a96d81
bba27b9
 
620a7c5
bba27b9
 
09980bd
 
 
 
787f98f
bb20f6e
 
b4ee158
06a1d7b
09980bd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from pathlib import Path
from glob import glob
from functools import partial
import numpy as np
import torch
import gradio as gr
import pandas as pd
import re

from model import VariationalGNN


examples_path = "examples"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

correct_preds, wrong_preds = {}, {}
condition_lst = pd.read_csv("data/feature.csv", header = "infer", sep = ",", encoding = "utf-8", dtype=str)
D_LABITEMS = pd.read_csv("data/D_LABITEMS.csv", header = "infer", sep = ",", encoding = "utf-8", dtype=str)


def load_model():
    path = r"models/final_model.pt"
    kwargs, state = torch.load(path, weights_only=False, map_location=device)
    model = VariationalGNN(**kwargs).to(device)
    model.load_state_dict(state)
    return model

model = load_model()

def _check_patient_csv_format(df: pd.DataFrame):
    if not (list(df.columns)[0:2] == ["condition", "value"]):
        raise gr.Error(f"Column set [{list(df.columns)}]: not expected.", duration=None)
    if condition_lst["condition"].to_list() != df["condition"].to_list():
        raise gr.Error(f"Condition set: not expected.", duration=None)
    vals = np.sort(df["value"].unique())
    if not (vals.ndim == 1 and len(vals) == 2 and all(vals == np.array([0.0, 1.0]))):
        raise gr.Error(f"Column 'value': contain invalid values.", duration=None)
    

def _extract_patient_data_from_name(csv_file_name: str):
    patient_file_pat = r"^Patient_(\d+)_\(Label-(alive|dead)\)_\(Predicted-(dead|alive)\).csv$"
    csv_name = Path(csv_file_name).name
    matches = re.search(patient_file_pat, csv_name)
    if matches is None:
        return None
    else:
        return (matches.group(1), matches.group(2), matches.group(3))


def _find_example_csv_files() -> None:
    all_csv_files = glob(f'{examples_path}/*.csv', recursive=True)
    if len(all_csv_files) == 0:
        print("*** No csv files found.")
    else:
        for one_csv_file in all_csv_files:
            matches = _extract_patient_data_from_name(one_csv_file)
            if matches:
                pat_id, pat_label, pat_predicted = matches
                if pat_id in correct_preds or pat_id in wrong_preds:
                    print(f"*** File [{one_csv_file}]: already processed! How come?")
                else:
                    if pat_label == pat_predicted:
                        correct_preds[pat_id] = {"label": pat_label,
                                                 "predicted": pat_predicted,
                                                 "file_name": one_csv_file}
                    else:
                        wrong_preds[pat_id] = {"label": pat_label,
                                               "predicted": pat_predicted,
                                               "file_name": one_csv_file}
            else:
                print(f"*** File [{one_csv_file}]: wrong name.")
            

_find_example_csv_files()

def _predict(file_path: str):
    df = pd.read_csv(f"{file_path}", 
                     header="infer", 
                     sep=",", 
                     encoding="utf-8", 
                     dtype={'condition': 'str', 'value': 'float32'}, 
                     keep_default_na=False)
    _check_patient_csv_format(df)
    patient_data = torch.from_numpy(df["value"].to_numpy()).unsqueeze(dim=0).to(device)
    
    model.eval()
    with torch.inference_mode():
        probability, _ = model(patient_data)
        probability = torch.sigmoid(probability.detach().cpu()[0]).item()
    
    return probability


def example_csv_click(patient_id: int):
    print(f"*** Predict patient {patient_id} (Example CSV)")
    
    patient = correct_preds[patient_id] if patient_id in correct_preds else wrong_preds[patient_id]
    probability = _predict(patient['file_name'])
    return [{"dead": probability, "alive": 1-probability}, 
            patient['label']]


def user_csv_upload(temp_csv_file_path):
    print(f"*** Predict patient (User CSV Upload)")
    
    matches = _extract_patient_data_from_name(temp_csv_file_path)
    probability = _predict(temp_csv_file_path)
    return [{"dead": probability, "alive": 1-probability}, 
            "(Not Available)" if matches is None else matches[1]]


def do_query(query_str, query_type):
    if query_type in ["Diagnosis", "Procedure"]:
        str_to_search = f"ICD-9 {query_type} Code " + query_str
        return gr.HTML(value=f'<a href="https://www.google.com/search?q={str_to_search}" target="_blank">Google</a>', 
                       visible=True)
    else:   # Lab Code
        query_str = query_str.strip()
        if (index := query_str.rfind("_")) >= 0:
            query_str = query_str[0:index]
        res = D_LABITEMS[D_LABITEMS["ITEMID"] == query_str]
        if res.shape[0] == 0:
            answer = "(Something wrong. No definition found.)"
        elif res.shape[0] == 1:
            answer = f"{res['LABEL'].values[0]}-{res['FLUID'].values[0]}-{res['CATEGORY'].values[0]}"
        else:
            answer=f"(Something wrong. Too many definitions, given code [{query_str}].)"
        return gr.HTML(value=answer,
                       visible=True)


def query_input_change_event(query_str, query_type):
    if (query_str is not None and len(query_str.strip())>0 and\
        query_type is not None):
        return [gr.Button(interactive=True), gr.HTML(visible=False)]
    else:
        return [gr.Button(interactive=False), gr.HTML(visible=False)]

resDispPartFuncs = []

css = \
"""
#selectFileToUpload {max-height: 180px}
.gradio-container {
    background: url(https://www.kindpng.com/picc/m/207-2075829_transparent-healthcare-clipart-medical-report-icon-hd-png.png);
    background-position: 80% 85%;
    background-repeat: no-repeat;
    background-size: 200px;
}
#label-label {
    height: 50px !important;
}
#label-label > .container {
    height: 50px !important;
}
#label-label > .container > h2 {
    //height: 50px !important;
    padding: 0 !important;
}
"""

with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """
                ## Input:
                (See examples for file structure)
                """
            )
            patient_upload_file = gr.File(label="Upload A Patient", 
                                          file_types = ['.csv'],
                                          file_count = "single",
                                          elem_id="selectFileToUpload")
            patient_upload_file.upload(fn=user_csv_upload, inputs=patient_upload_file, outputs=None)
            gr.Markdown(
                """
                ## Examples - Correct Prediction:
                """
            )
            with gr.Row():
                for patient_id in correct_preds.keys():
                    with gr.Column(variant='panel', 
                                   min_width=100):
                        patient_input_btn = gr.Button(f"Patient {patient_id}", 
                                                      size="sm")
                        patient_download_btn = gr.DownloadButton(label="Download", 
                                                                 value=f"{correct_preds[patient_id]['file_name']}", 
                                                                 size="sm")
                        patient_id_num = gr.Number(value=patient_id,
                                                   visible=False)
                        partFunc = partial(patient_input_btn.click, 
                                           fn=example_csv_click, 
                                           inputs=patient_id_num, 
                                           api_name="predict")
                        resDispPartFuncs.append(partFunc)
            gr.Markdown(
                """
                ## Examples - Wrong Prediction:
                """
            )
            with gr.Row():
                for patient_id in wrong_preds.keys():
                    with gr.Column(variant='panel', 
                                   min_width=100):
                        patient_input_btn = gr.Button(f"Patient {patient_id}", 
                                                      size="sm")
                        patient_download_btn = gr.DownloadButton(label="Download", 
                                                                 value=f"{wrong_preds[patient_id]['file_name']}", 
                                                                 size="sm")
                        patient_id_num = gr.Number(value=patient_id, 
                                                   visible=False)
                        partFunc = partial(patient_input_btn.click,
                                           fn=example_csv_click, 
                                           inputs=patient_id_num, 
                                           api_name="predict")
                        resDispPartFuncs.append(partFunc)
        with gr.Column():
            gr.Markdown(
                """
                ## Mortality Prediction:
                In 24 hours after ICU admission.
                """
            )
            result_pred = gr.Label(num_top_classes=2, label="Predicted")
            result_label = gr.Label(label="Label", elem_id="label-label")
            
            with gr.Accordion("More on Patient Conditions...", open=False):
                query_tbx = gr.Textbox(label="Enter one ICD-9 Diagnosis/Procedure Code or Lab Value:",
                           lines=1,
                           max_lines=1, placeholder="00869 for 'Other viral intes infec' (Diagnosis)")
                query_type = gr.Radio(["Diagnosis", "Procedure", "Lab Value"], show_label=False)
                query_btn = gr.Button(value="Query", size="sm", interactive=False)
                html = gr.HTML("", visible=False)
                
                query_tbx.change(fn=query_input_change_event, inputs=[query_tbx, query_type], outputs=[query_btn, html])
                query_type.change(fn=query_input_change_event, inputs=[query_tbx, query_type], outputs=[query_btn, html])
                query_btn.click(fn=do_query, inputs=[query_tbx, query_type], outputs=html)
            with gr.Accordion("More on Technical Details...", open=False):
                gr.Markdown(
                """
                - Paper: [Variationally Regularized Graph-based Representation Learning for Electronic Health Records (Zhu et al, 2021)](https://arxiv.org/abs/1912.03761)
                - Dataset: [MIMIC-III](https://physionet.org/content/mimiciii/1.4/)
                  - 50,314 records, 10,591 features
                  - 5,315 positive, 44,999 negative (11.8%)
                  - Split: 80% training, 10% validation, 10% testing
                - Notable points:
                  - Result: AUPRC 0.7027 (Baseline: 0.118) on Val split
                  - Variational Regularization, inspired by [Kipf et al., 2016](https://arxiv.org/abs/1611.07308)
                  - Trained on NVIDIA A100 with PyTorch 2.4.0
                - Code on GitHub: [pytorch-variational-gcn-ehr-public](https://github.com/ThachNgocTran/pytorch-variational-gcn-ehr-public)
                """
            )
            with gr.Accordion("More on Training...", open=False):
                gr.HTML("""
                        <img src="/file=images/AUPRC_Training_Graph.png" alt="">
                        """)
    
    for partialFunc in resDispPartFuncs:
        partialFunc(outputs=[result_pred, result_label])
    
    
demo.launch(debug=True, allowed_paths=["images/."])