Spaces:
Sleeping
Sleeping
Improved more technical detail
Browse files
app.py
CHANGED
@@ -147,6 +147,16 @@ css = \
|
|
147 |
background-repeat: no-repeat;
|
148 |
background-size: 200px;
|
149 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
"""
|
151 |
|
152 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
@@ -213,7 +223,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
213 |
"""
|
214 |
)
|
215 |
result_pred = gr.Label(num_top_classes=2, label="Predicted")
|
216 |
-
result_label = gr.Label(label="Label")
|
217 |
|
218 |
with gr.Accordion("More on Patient Conditions...", open=False):
|
219 |
query_tbx = gr.Textbox(label="Enter one ICD-9 Diagnosis/Procedure Code or Lab Value:",
|
@@ -226,7 +236,20 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
226 |
query_tbx.change(fn=query_input_change_event, inputs=[query_tbx, query_type], outputs=[query_btn, html])
|
227 |
query_type.change(fn=query_input_change_event, inputs=[query_tbx, query_type], outputs=[query_btn, html])
|
228 |
query_btn.click(fn=do_query, inputs=[query_tbx, query_type], outputs=html)
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
|
231 |
for partialFunc in resDispPartFuncs:
|
232 |
partialFunc(outputs=[result_pred, result_label])
|
|
|
147 |
background-repeat: no-repeat;
|
148 |
background-size: 200px;
|
149 |
}
|
150 |
+
#label-label {
|
151 |
+
height: 50px !important;
|
152 |
+
}
|
153 |
+
#label-label > .container {
|
154 |
+
height: 50px !important;
|
155 |
+
}
|
156 |
+
#label-label > .container > h2 {
|
157 |
+
//height: 50px !important;
|
158 |
+
padding: 0 !important;
|
159 |
+
}
|
160 |
"""
|
161 |
|
162 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
|
223 |
"""
|
224 |
)
|
225 |
result_pred = gr.Label(num_top_classes=2, label="Predicted")
|
226 |
+
result_label = gr.Label(label="Label", elem_id="label-label")
|
227 |
|
228 |
with gr.Accordion("More on Patient Conditions...", open=False):
|
229 |
query_tbx = gr.Textbox(label="Enter one ICD-9 Diagnosis/Procedure Code or Lab Value:",
|
|
|
236 |
query_tbx.change(fn=query_input_change_event, inputs=[query_tbx, query_type], outputs=[query_btn, html])
|
237 |
query_type.change(fn=query_input_change_event, inputs=[query_tbx, query_type], outputs=[query_btn, html])
|
238 |
query_btn.click(fn=do_query, inputs=[query_tbx, query_type], outputs=html)
|
239 |
+
with gr.Accordion("More on technical details...", open=False):
|
240 |
+
gr.Markdown(
|
241 |
+
"""
|
242 |
+
- Paper: [Variationally Regularized Graph-based Representation Learning for Electronic Health Records (Zhu et al, 2021)](https://arxiv.org/abs/1912.03761)
|
243 |
+
- Dataset: [MIMIC-III](https://physionet.org/content/mimiciii/1.4/)
|
244 |
+
- 50,314 records, 10591 features
|
245 |
+
- 5,315 positive, 44,999 negative (11.8%)
|
246 |
+
- Split: 80% training, 10% validation, 10% testing
|
247 |
+
- Notable points:
|
248 |
+
- Result: AUPRC 0.7033 (>> 0.118)
|
249 |
+
- Variational Regularization, inspired by [Kipf et al., 2016](https://arxiv.org/abs/1611.07308)
|
250 |
+
- Trained on NVIDIA A100 with PyTorch 2.4.0
|
251 |
+
"""
|
252 |
+
)
|
253 |
|
254 |
for partialFunc in resDispPartFuncs:
|
255 |
partialFunc(outputs=[result_pred, result_label])
|