Spaces:
Running
on
T4
Running
on
T4
File size: 2,020 Bytes
ec3a273 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
model:
base_learning_rate: 2.0e-06
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.0015
linear_end: 0.0195
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: image
image_size: 64
channels: 3
monitor: val/loss_simple_ema
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64
in_channels: 3
out_channels: 3
model_channels: 224
attention_resolutions:
# note: this isn\t actually the resolution but
# the downsampling factor, i.e. this corresnponds to
# attention on spatial resolution 8,16,32, as the
# spatial reolution of the latents is 64 for f4
- 8
- 4
- 2
num_res_blocks: 2
channel_mult:
- 1
- 2
- 3
- 4
num_head_channels: 32
first_stage_config:
target: ldm.models.autoencoder.VQModelInterface
params:
embed_dim: 3
n_embed: 8192
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
ddconfig:
double_z: false
z_channels: 3
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config: __is_unconditional__
data:
target: main.DataModuleFromConfig
params:
batch_size: 42
num_workers: 5
wrap: false
train:
target: taming.data.faceshq.FFHQTrain
params:
size: 256
validation:
target: taming.data.faceshq.FFHQValidation
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 8
increase_log_steps: False
trainer:
benchmark: True |