Spaces:
Running
on
T4
Running
on
T4
ablattmann
commited on
Commit
•
ec3a273
1
Parent(s):
ebcf159
add configs for training unconditional/class-conditional ldms
Browse files- README.md +85 -15
- configs/latent-diffusion/celebahq-ldm-vq-4.yaml +86 -0
- configs/latent-diffusion/cin-ldm-vq-f8.yaml +98 -0
- configs/latent-diffusion/ffhq-ldm-vq-4.yaml +85 -0
- configs/latent-diffusion/lsun_bedrooms-ldm-vq-4.yaml +85 -0
- configs/latent-diffusion/{lsun_churches_f8-autoencoder-ldm.yaml → lsun_churches-ldm-kl-8.yaml} +3 -7
- ldm/models/diffusion/ddim.py +4 -5
- ldm/models/diffusion/ddpm.py +37 -22
- ldm/modules/diffusionmodules/util.py +6 -0
- main.py +4 -1
- models/ldm/semantic_synthesis256/config.yaml +59 -0
- scripts/download_first_stages.sh +2 -2
- scripts/download_models.sh +8 -1
README.md
CHANGED
@@ -55,18 +55,7 @@ bash scripts/download_first_stages.sh
|
|
55 |
```
|
56 |
|
57 |
The first stage models can then be found in `models/first_stage_models/<model_spec>`
|
58 |
-
### Training autoencoder models
|
59 |
|
60 |
-
Configs for training a KL-regularized autoencoder on ImageNet are provided at `configs/autoencoder`.
|
61 |
-
Training can be started by running
|
62 |
-
```
|
63 |
-
CUDA_VISIBLE_DEVICES=<GPU_ID> python main.py --base configs/autoencoder/<config_spec> -t --gpus 0,
|
64 |
-
```
|
65 |
-
where `config_spec` is one of {`autoencoder_kl_8x8x64.yaml`(f=32, d=64), `autoencoder_kl_16x16x16.yaml`(f=16, d=16),
|
66 |
-
`autoencoder_kl_32x32x4`(f=8, d=4), `autoencoder_kl_64x64x3`(f=4, d=3)}.
|
67 |
-
|
68 |
-
For training VQ-regularized models, see the [taming-transformers](https://github.com/CompVis/taming-transformers)
|
69 |
-
repository.
|
70 |
|
71 |
|
72 |
## Pretrained LDMs
|
@@ -78,9 +67,10 @@ repository.
|
|
78 |
| LSUN-Bedrooms | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=1)| 2.95 (3.0) | 2.22 (2.23)| 0.66 | 0.48 | https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip | |
|
79 |
| ImageNet | Class-conditional Image Synthesis | LDM-VQ-8 (200 DDIM steps, eta=1) | 7.77(7.76)* /15.82** | 201.56(209.52)* /78.82** | 0.84* / 0.65** | 0.35* / 0.63** | https://ommer-lab.com/files/latent-diffusion/cin.zip | *: w/ guiding, classifier_scale 10 **: w/o guiding, scores in bracket calculated with script provided by [ADM](https://github.com/openai/guided-diffusion) |
|
80 |
| Conceptual Captions | Text-conditional Image Synthesis | LDM-VQ-f4 (100 DDIM steps, eta=0) | 16.79 | 13.89 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/text2img.zip | finetuned from LAION |
|
81 |
-
| OpenImages | Super-resolution |
|
82 |
| OpenImages | Layout-to-Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=0) | 32.02 | 15.92 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip | |
|
83 |
-
| Landscapes
|
|
|
84 |
|
85 |
|
86 |
### Get the models
|
@@ -116,10 +106,90 @@ python scripts/inpaint.py --indir data/inpainting_examples/ --outdir outputs/inp
|
|
116 |
`indir` should contain images `*.png` and masks `<image_fname>_mask.png` like
|
117 |
the examples provided in `data/inpainting_examples`.
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
## Coming Soon...
|
120 |
|
121 |
-
*
|
122 |
-
* Inference scripts for conditional LDMs for various conditioning modalities.
|
123 |
* In the meantime, you can play with our colab notebook https://colab.research.google.com/drive/1xqzUi2iXQXDqXBHQGP9Mqt2YrYW6cx-J?usp=sharing
|
124 |
* We will also release some further pretrained models.
|
125 |
|
|
|
55 |
```
|
56 |
|
57 |
The first stage models can then be found in `models/first_stage_models/<model_spec>`
|
|
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
|
61 |
## Pretrained LDMs
|
|
|
67 |
| LSUN-Bedrooms | Unconditional Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=1)| 2.95 (3.0) | 2.22 (2.23)| 0.66 | 0.48 | https://ommer-lab.com/files/latent-diffusion/lsun_bedrooms.zip | |
|
68 |
| ImageNet | Class-conditional Image Synthesis | LDM-VQ-8 (200 DDIM steps, eta=1) | 7.77(7.76)* /15.82** | 201.56(209.52)* /78.82** | 0.84* / 0.65** | 0.35* / 0.63** | https://ommer-lab.com/files/latent-diffusion/cin.zip | *: w/ guiding, classifier_scale 10 **: w/o guiding, scores in bracket calculated with script provided by [ADM](https://github.com/openai/guided-diffusion) |
|
69 |
| Conceptual Captions | Text-conditional Image Synthesis | LDM-VQ-f4 (100 DDIM steps, eta=0) | 16.79 | 13.89 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/text2img.zip | finetuned from LAION |
|
70 |
+
| OpenImages | Super-resolution | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip | BSR image degradation |
|
71 |
| OpenImages | Layout-to-Image Synthesis | LDM-VQ-4 (200 DDIM steps, eta=0) | 32.02 | 15.92 | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip | |
|
72 |
+
| Landscapes | Semantic Image Synthesis | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/semantic_synthesis256.zip | |
|
73 |
+
| Landscapes | Semantic Image Synthesis | LDM-VQ-4 | N/A | N/A | N/A | N/A | https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip | finetuned on resolution 512x512 |
|
74 |
|
75 |
|
76 |
### Get the models
|
|
|
106 |
`indir` should contain images `*.png` and masks `<image_fname>_mask.png` like
|
107 |
the examples provided in `data/inpainting_examples`.
|
108 |
|
109 |
+
|
110 |
+
# Train your own LDMs
|
111 |
+
|
112 |
+
## Data preparation
|
113 |
+
|
114 |
+
### Faces
|
115 |
+
For downloading the CelebA-HQ and FFHQ datasets, proceed as described in the [taming-transformers](https://github.com/CompVis/taming-transformers#celeba-hq)
|
116 |
+
repository.
|
117 |
+
|
118 |
+
### LSUN
|
119 |
+
|
120 |
+
The LSUN datasets can be conveniently downloaded via the script available [here](https://github.com/fyu/lsun).
|
121 |
+
We performed a custom split into training and validation images, and provide the corresponding filenames
|
122 |
+
at [https://ommer-lab.com/files/lsun.zip](https://ommer-lab.com/files/lsun.zip).
|
123 |
+
After downloading, extract them to `./data/lsun`. The beds/cats/churches subsets should
|
124 |
+
also be placed/symlinked at `./data/lsun/bedrooms`/`./data/lsun/cats`/`./data/lsun/churches`, respectively.
|
125 |
+
|
126 |
+
### ImageNet
|
127 |
+
The code will try to download (through [Academic
|
128 |
+
Torrents](http://academictorrents.com/)) and prepare ImageNet the first time it
|
129 |
+
is used. However, since ImageNet is quite large, this requires a lot of disk
|
130 |
+
space and time. If you already have ImageNet on your disk, you can speed things
|
131 |
+
up by putting the data into
|
132 |
+
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/` (which defaults to
|
133 |
+
`~/.cache/autoencoders/data/ILSVRC2012_{split}/data/`), where `{split}` is one
|
134 |
+
of `train`/`validation`. It should have the following structure:
|
135 |
+
|
136 |
+
```
|
137 |
+
${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/
|
138 |
+
├── n01440764
|
139 |
+
│ ├── n01440764_10026.JPEG
|
140 |
+
│ ├── n01440764_10027.JPEG
|
141 |
+
│ ├── ...
|
142 |
+
├── n01443537
|
143 |
+
│ ├── n01443537_10007.JPEG
|
144 |
+
│ ├── n01443537_10014.JPEG
|
145 |
+
│ ├── ...
|
146 |
+
├── ...
|
147 |
+
```
|
148 |
+
|
149 |
+
If you haven't extracted the data, you can also place
|
150 |
+
`ILSVRC2012_img_train.tar`/`ILSVRC2012_img_val.tar` (or symlinks to them) into
|
151 |
+
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_train/` /
|
152 |
+
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_validation/`, which will then be
|
153 |
+
extracted into above structure without downloading it again. Note that this
|
154 |
+
will only happen if neither a folder
|
155 |
+
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/data/` nor a file
|
156 |
+
`${XDG_CACHE}/autoencoders/data/ILSVRC2012_{split}/.ready` exist. Remove them
|
157 |
+
if you want to force running the dataset preparation again.
|
158 |
+
|
159 |
+
|
160 |
+
## Model Training
|
161 |
+
|
162 |
+
Logs and checkpoints for trained models are saved to `logs/<START_DATE_AND_TIME>_<config_spec>`.
|
163 |
+
|
164 |
+
### Training autoencoder models
|
165 |
+
|
166 |
+
Configs for training a KL-regularized autoencoder on ImageNet are provided at `configs/autoencoder`.
|
167 |
+
Training can be started by running
|
168 |
+
```
|
169 |
+
CUDA_VISIBLE_DEVICES=<GPU_ID> python main.py --base configs/autoencoder/<config_spec>.yaml -t --gpus 0,
|
170 |
+
```
|
171 |
+
where `config_spec` is one of {`autoencoder_kl_8x8x64`(f=32, d=64), `autoencoder_kl_16x16x16`(f=16, d=16),
|
172 |
+
`autoencoder_kl_32x32x4`(f=8, d=4), `autoencoder_kl_64x64x3`(f=4, d=3)}.
|
173 |
+
|
174 |
+
For training VQ-regularized models, see the [taming-transformers](https://github.com/CompVis/taming-transformers)
|
175 |
+
repository.
|
176 |
+
|
177 |
+
### Training LDMs
|
178 |
+
|
179 |
+
In ``configs/latent-diffusion/`` we provide configs for training LDMs on the LSUN-, CelebA-HQ, FFHQ and ImageNet datasets.
|
180 |
+
Training can be started by running
|
181 |
+
|
182 |
+
```shell script
|
183 |
+
CUDA_VISIBLE_DEVICES=<GPU_ID> python main.py --base configs/latent-diffusion/<config_spec>.yaml -t --gpus 0,
|
184 |
+
```
|
185 |
+
|
186 |
+
where ``<config_spec>`` is one of {`celebahq-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),`ffhq-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),
|
187 |
+
`lsun_bedrooms-ldm-vq-4`(f=4, VQ-reg. autoencoder, spatial size 64x64x3),
|
188 |
+
`lsun_churches-ldm-vq-4`(f=8, KL-reg. autoencoder, spatial size 32x32x4),`cin-ldm-vq-8`(f=8, VQ-reg. autoencoder, spatial size 32x32x4)}.
|
189 |
+
|
190 |
## Coming Soon...
|
191 |
|
192 |
+
* More inference scripts for conditional LDMs.
|
|
|
193 |
* In the meantime, you can play with our colab notebook https://colab.research.google.com/drive/1xqzUi2iXQXDqXBHQGP9Mqt2YrYW6cx-J?usp=sharing
|
194 |
* We will also release some further pretrained models.
|
195 |
|
configs/latent-diffusion/celebahq-ldm-vq-4.yaml
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 2.0e-06
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.0015
|
6 |
+
linear_end: 0.0195
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: image
|
11 |
+
image_size: 64
|
12 |
+
channels: 3
|
13 |
+
monitor: val/loss_simple_ema
|
14 |
+
|
15 |
+
unet_config:
|
16 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
17 |
+
params:
|
18 |
+
image_size: 64
|
19 |
+
in_channels: 3
|
20 |
+
out_channels: 3
|
21 |
+
model_channels: 224
|
22 |
+
attention_resolutions:
|
23 |
+
# note: this isn\t actually the resolution but
|
24 |
+
# the downsampling factor, i.e. this corresnponds to
|
25 |
+
# attention on spatial resolution 8,16,32, as the
|
26 |
+
# spatial reolution of the latents is 64 for f4
|
27 |
+
- 8
|
28 |
+
- 4
|
29 |
+
- 2
|
30 |
+
num_res_blocks: 2
|
31 |
+
channel_mult:
|
32 |
+
- 1
|
33 |
+
- 2
|
34 |
+
- 3
|
35 |
+
- 4
|
36 |
+
num_head_channels: 32
|
37 |
+
first_stage_config:
|
38 |
+
target: ldm.models.autoencoder.VQModelInterface
|
39 |
+
params:
|
40 |
+
embed_dim: 3
|
41 |
+
n_embed: 8192
|
42 |
+
ckpt_path: models/first_stage_models/vq-f4/model.ckpt
|
43 |
+
ddconfig:
|
44 |
+
double_z: false
|
45 |
+
z_channels: 3
|
46 |
+
resolution: 256
|
47 |
+
in_channels: 3
|
48 |
+
out_ch: 3
|
49 |
+
ch: 128
|
50 |
+
ch_mult:
|
51 |
+
- 1
|
52 |
+
- 2
|
53 |
+
- 4
|
54 |
+
num_res_blocks: 2
|
55 |
+
attn_resolutions: []
|
56 |
+
dropout: 0.0
|
57 |
+
lossconfig:
|
58 |
+
target: torch.nn.Identity
|
59 |
+
cond_stage_config: __is_unconditional__
|
60 |
+
data:
|
61 |
+
target: main.DataModuleFromConfig
|
62 |
+
params:
|
63 |
+
batch_size: 48
|
64 |
+
num_workers: 5
|
65 |
+
wrap: false
|
66 |
+
train:
|
67 |
+
target: taming.data.faceshq.CelebAHQTrain
|
68 |
+
params:
|
69 |
+
size: 256
|
70 |
+
validation:
|
71 |
+
target: taming.data.faceshq.CelebAHQValidation
|
72 |
+
params:
|
73 |
+
size: 256
|
74 |
+
|
75 |
+
|
76 |
+
lightning:
|
77 |
+
callbacks:
|
78 |
+
image_logger:
|
79 |
+
target: main.ImageLogger
|
80 |
+
params:
|
81 |
+
batch_frequency: 5000
|
82 |
+
max_images: 8
|
83 |
+
increase_log_steps: False
|
84 |
+
|
85 |
+
trainer:
|
86 |
+
benchmark: True
|
configs/latent-diffusion/cin-ldm-vq-f8.yaml
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-06
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.0015
|
6 |
+
linear_end: 0.0195
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: image
|
11 |
+
cond_stage_key: class_label
|
12 |
+
image_size: 32
|
13 |
+
channels: 4
|
14 |
+
cond_stage_trainable: true
|
15 |
+
conditioning_key: crossattn
|
16 |
+
monitor: val/loss_simple_ema
|
17 |
+
unet_config:
|
18 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
19 |
+
params:
|
20 |
+
image_size: 32
|
21 |
+
in_channels: 4
|
22 |
+
out_channels: 4
|
23 |
+
model_channels: 256
|
24 |
+
attention_resolutions:
|
25 |
+
#note: this isn\t actually the resolution but
|
26 |
+
# the downsampling factor, i.e. this corresnponds to
|
27 |
+
# attention on spatial resolution 8,16,32, as the
|
28 |
+
# spatial reolution of the latents is 32 for f8
|
29 |
+
- 4
|
30 |
+
- 2
|
31 |
+
- 1
|
32 |
+
num_res_blocks: 2
|
33 |
+
channel_mult:
|
34 |
+
- 1
|
35 |
+
- 2
|
36 |
+
- 4
|
37 |
+
num_head_channels: 32
|
38 |
+
use_spatial_transformer: true
|
39 |
+
transformer_depth: 1
|
40 |
+
context_dim: 512
|
41 |
+
first_stage_config:
|
42 |
+
target: ldm.models.autoencoder.VQModelInterface
|
43 |
+
params:
|
44 |
+
embed_dim: 4
|
45 |
+
n_embed: 16384
|
46 |
+
ckpt_path: configs/first_stage_models/vq-f8/model.yaml
|
47 |
+
ddconfig:
|
48 |
+
double_z: false
|
49 |
+
z_channels: 4
|
50 |
+
resolution: 256
|
51 |
+
in_channels: 3
|
52 |
+
out_ch: 3
|
53 |
+
ch: 128
|
54 |
+
ch_mult:
|
55 |
+
- 1
|
56 |
+
- 2
|
57 |
+
- 2
|
58 |
+
- 4
|
59 |
+
num_res_blocks: 2
|
60 |
+
attn_resolutions:
|
61 |
+
- 32
|
62 |
+
dropout: 0.0
|
63 |
+
lossconfig:
|
64 |
+
target: torch.nn.Identity
|
65 |
+
cond_stage_config:
|
66 |
+
target: ldm.modules.encoders.modules.ClassEmbedder
|
67 |
+
params:
|
68 |
+
embed_dim: 512
|
69 |
+
key: class_label
|
70 |
+
data:
|
71 |
+
target: main.DataModuleFromConfig
|
72 |
+
params:
|
73 |
+
batch_size: 64
|
74 |
+
num_workers: 12
|
75 |
+
wrap: false
|
76 |
+
train:
|
77 |
+
target: ldm.data.imagenet.ImageNetTrain
|
78 |
+
params:
|
79 |
+
config:
|
80 |
+
size: 256
|
81 |
+
validation:
|
82 |
+
target: ldm.data.imagenet.ImageNetValidation
|
83 |
+
params:
|
84 |
+
config:
|
85 |
+
size: 256
|
86 |
+
|
87 |
+
|
88 |
+
lightning:
|
89 |
+
callbacks:
|
90 |
+
image_logger:
|
91 |
+
target: main.ImageLogger
|
92 |
+
params:
|
93 |
+
batch_frequency: 5000
|
94 |
+
max_images: 8
|
95 |
+
increase_log_steps: False
|
96 |
+
|
97 |
+
trainer:
|
98 |
+
benchmark: True
|
configs/latent-diffusion/ffhq-ldm-vq-4.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 2.0e-06
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.0015
|
6 |
+
linear_end: 0.0195
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: image
|
11 |
+
image_size: 64
|
12 |
+
channels: 3
|
13 |
+
monitor: val/loss_simple_ema
|
14 |
+
unet_config:
|
15 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
16 |
+
params:
|
17 |
+
image_size: 64
|
18 |
+
in_channels: 3
|
19 |
+
out_channels: 3
|
20 |
+
model_channels: 224
|
21 |
+
attention_resolutions:
|
22 |
+
# note: this isn\t actually the resolution but
|
23 |
+
# the downsampling factor, i.e. this corresnponds to
|
24 |
+
# attention on spatial resolution 8,16,32, as the
|
25 |
+
# spatial reolution of the latents is 64 for f4
|
26 |
+
- 8
|
27 |
+
- 4
|
28 |
+
- 2
|
29 |
+
num_res_blocks: 2
|
30 |
+
channel_mult:
|
31 |
+
- 1
|
32 |
+
- 2
|
33 |
+
- 3
|
34 |
+
- 4
|
35 |
+
num_head_channels: 32
|
36 |
+
first_stage_config:
|
37 |
+
target: ldm.models.autoencoder.VQModelInterface
|
38 |
+
params:
|
39 |
+
embed_dim: 3
|
40 |
+
n_embed: 8192
|
41 |
+
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
|
42 |
+
ddconfig:
|
43 |
+
double_z: false
|
44 |
+
z_channels: 3
|
45 |
+
resolution: 256
|
46 |
+
in_channels: 3
|
47 |
+
out_ch: 3
|
48 |
+
ch: 128
|
49 |
+
ch_mult:
|
50 |
+
- 1
|
51 |
+
- 2
|
52 |
+
- 4
|
53 |
+
num_res_blocks: 2
|
54 |
+
attn_resolutions: []
|
55 |
+
dropout: 0.0
|
56 |
+
lossconfig:
|
57 |
+
target: torch.nn.Identity
|
58 |
+
cond_stage_config: __is_unconditional__
|
59 |
+
data:
|
60 |
+
target: main.DataModuleFromConfig
|
61 |
+
params:
|
62 |
+
batch_size: 42
|
63 |
+
num_workers: 5
|
64 |
+
wrap: false
|
65 |
+
train:
|
66 |
+
target: taming.data.faceshq.FFHQTrain
|
67 |
+
params:
|
68 |
+
size: 256
|
69 |
+
validation:
|
70 |
+
target: taming.data.faceshq.FFHQValidation
|
71 |
+
params:
|
72 |
+
size: 256
|
73 |
+
|
74 |
+
|
75 |
+
lightning:
|
76 |
+
callbacks:
|
77 |
+
image_logger:
|
78 |
+
target: main.ImageLogger
|
79 |
+
params:
|
80 |
+
batch_frequency: 5000
|
81 |
+
max_images: 8
|
82 |
+
increase_log_steps: False
|
83 |
+
|
84 |
+
trainer:
|
85 |
+
benchmark: True
|
configs/latent-diffusion/lsun_bedrooms-ldm-vq-4.yaml
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 2.0e-06
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.0015
|
6 |
+
linear_end: 0.0195
|
7 |
+
num_timesteps_cond: 1
|
8 |
+
log_every_t: 200
|
9 |
+
timesteps: 1000
|
10 |
+
first_stage_key: image
|
11 |
+
image_size: 64
|
12 |
+
channels: 3
|
13 |
+
monitor: val/loss_simple_ema
|
14 |
+
unet_config:
|
15 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
16 |
+
params:
|
17 |
+
image_size: 64
|
18 |
+
in_channels: 3
|
19 |
+
out_channels: 3
|
20 |
+
model_channels: 224
|
21 |
+
attention_resolutions:
|
22 |
+
# note: this isn\t actually the resolution but
|
23 |
+
# the downsampling factor, i.e. this corresnponds to
|
24 |
+
# attention on spatial resolution 8,16,32, as the
|
25 |
+
# spatial reolution of the latents is 64 for f4
|
26 |
+
- 8
|
27 |
+
- 4
|
28 |
+
- 2
|
29 |
+
num_res_blocks: 2
|
30 |
+
channel_mult:
|
31 |
+
- 1
|
32 |
+
- 2
|
33 |
+
- 3
|
34 |
+
- 4
|
35 |
+
num_head_channels: 32
|
36 |
+
first_stage_config:
|
37 |
+
target: ldm.models.autoencoder.VQModelInterface
|
38 |
+
params:
|
39 |
+
ckpt_path: configs/first_stage_models/vq-f4/model.yaml
|
40 |
+
embed_dim: 3
|
41 |
+
n_embed: 8192
|
42 |
+
ddconfig:
|
43 |
+
double_z: false
|
44 |
+
z_channels: 3
|
45 |
+
resolution: 256
|
46 |
+
in_channels: 3
|
47 |
+
out_ch: 3
|
48 |
+
ch: 128
|
49 |
+
ch_mult:
|
50 |
+
- 1
|
51 |
+
- 2
|
52 |
+
- 4
|
53 |
+
num_res_blocks: 2
|
54 |
+
attn_resolutions: []
|
55 |
+
dropout: 0.0
|
56 |
+
lossconfig:
|
57 |
+
target: torch.nn.Identity
|
58 |
+
cond_stage_config: __is_unconditional__
|
59 |
+
data:
|
60 |
+
target: main.DataModuleFromConfig
|
61 |
+
params:
|
62 |
+
batch_size: 48
|
63 |
+
num_workers: 5
|
64 |
+
wrap: false
|
65 |
+
train:
|
66 |
+
target: ldm.data.lsun.LSUNBedroomsTrain
|
67 |
+
params:
|
68 |
+
size: 256
|
69 |
+
validation:
|
70 |
+
target: ldm.data.lsun.LSUNBedroomsValidation
|
71 |
+
params:
|
72 |
+
size: 256
|
73 |
+
|
74 |
+
|
75 |
+
lightning:
|
76 |
+
callbacks:
|
77 |
+
image_logger:
|
78 |
+
target: main.ImageLogger
|
79 |
+
params:
|
80 |
+
batch_frequency: 5000
|
81 |
+
max_images: 8
|
82 |
+
increase_log_steps: False
|
83 |
+
|
84 |
+
trainer:
|
85 |
+
benchmark: True
|
configs/latent-diffusion/{lsun_churches_f8-autoencoder-ldm.yaml → lsun_churches-ldm-kl-8.yaml}
RENAMED
@@ -45,7 +45,7 @@ model:
|
|
45 |
params:
|
46 |
embed_dim: 4
|
47 |
monitor: "val/rec_loss"
|
48 |
-
ckpt_path: "/
|
49 |
ddconfig:
|
50 |
double_z: True
|
51 |
z_channels: 4
|
@@ -65,7 +65,7 @@ model:
|
|
65 |
data:
|
66 |
target: main.DataModuleFromConfig
|
67 |
params:
|
68 |
-
batch_size:
|
69 |
num_workers: 5
|
70 |
wrap: False
|
71 |
train:
|
@@ -82,14 +82,10 @@ lightning:
|
|
82 |
image_logger:
|
83 |
target: main.ImageLogger
|
84 |
params:
|
85 |
-
batch_frequency:
|
86 |
max_images: 8
|
87 |
increase_log_steps: False
|
88 |
|
89 |
-
metrics_over_trainsteps_checkpoint:
|
90 |
-
target: pytorch_lightning.callbacks.ModelCheckpoint
|
91 |
-
params:
|
92 |
-
every_n_train_steps: 20000
|
93 |
|
94 |
trainer:
|
95 |
benchmark: True
|
|
|
45 |
params:
|
46 |
embed_dim: 4
|
47 |
monitor: "val/rec_loss"
|
48 |
+
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
|
49 |
ddconfig:
|
50 |
double_z: True
|
51 |
z_channels: 4
|
|
|
65 |
data:
|
66 |
target: main.DataModuleFromConfig
|
67 |
params:
|
68 |
+
batch_size: 96
|
69 |
num_workers: 5
|
70 |
wrap: False
|
71 |
train:
|
|
|
82 |
image_logger:
|
83 |
target: main.ImageLogger
|
84 |
params:
|
85 |
+
batch_frequency: 5000
|
86 |
max_images: 8
|
87 |
increase_log_steps: False
|
88 |
|
|
|
|
|
|
|
|
|
89 |
|
90 |
trainer:
|
91 |
benchmark: True
|
ldm/models/diffusion/ddim.py
CHANGED
@@ -5,8 +5,7 @@ import numpy as np
|
|
5 |
from tqdm import tqdm
|
6 |
from functools import partial
|
7 |
|
8 |
-
from ldm.
|
9 |
-
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps
|
10 |
|
11 |
|
12 |
class DDIMSampler(object):
|
@@ -27,8 +26,7 @@ class DDIMSampler(object):
|
|
27 |
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
28 |
alphas_cumprod = self.model.alphas_cumprod
|
29 |
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
30 |
-
|
31 |
-
to_torch = partial(torch.tensor, dtype=torch.float32, device=self.model.device)
|
32 |
|
33 |
self.register_buffer('betas', to_torch(self.model.betas))
|
34 |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
@@ -73,7 +71,8 @@ class DDIMSampler(object):
|
|
73 |
corrector_kwargs=None,
|
74 |
verbose=True,
|
75 |
x_T=None,
|
76 |
-
log_every_t=100
|
|
|
77 |
):
|
78 |
if conditioning is not None:
|
79 |
if isinstance(conditioning, dict):
|
|
|
5 |
from tqdm import tqdm
|
6 |
from functools import partial
|
7 |
|
8 |
+
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
|
|
9 |
|
10 |
|
11 |
class DDIMSampler(object):
|
|
|
26 |
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
|
27 |
alphas_cumprod = self.model.alphas_cumprod
|
28 |
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
|
29 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
|
|
|
30 |
|
31 |
self.register_buffer('betas', to_torch(self.model.betas))
|
32 |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
|
|
71 |
corrector_kwargs=None,
|
72 |
verbose=True,
|
73 |
x_T=None,
|
74 |
+
log_every_t=100,
|
75 |
+
**kwargs
|
76 |
):
|
77 |
if conditioning is not None:
|
78 |
if isinstance(conditioning, dict):
|
ldm/models/diffusion/ddpm.py
CHANGED
@@ -16,14 +16,14 @@ from contextlib import contextmanager
|
|
16 |
from functools import partial
|
17 |
from tqdm import tqdm
|
18 |
from torchvision.utils import make_grid
|
19 |
-
from PIL import Image
|
20 |
from pytorch_lightning.utilities.distributed import rank_zero_only
|
21 |
|
22 |
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
23 |
from ldm.modules.ema import LitEma
|
24 |
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
25 |
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
26 |
-
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor
|
|
|
27 |
|
28 |
|
29 |
__conditioning_keys__ = {'concat': 'c_concat',
|
@@ -37,12 +37,6 @@ def disabled_train(self, mode=True):
|
|
37 |
return self
|
38 |
|
39 |
|
40 |
-
def noise_like(shape, device, repeat=False):
|
41 |
-
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
42 |
-
noise = lambda: torch.randn(shape, device=device)
|
43 |
-
return repeat_noise() if repeat else noise()
|
44 |
-
|
45 |
-
|
46 |
def uniform_on_device(r1, r2, shape, device):
|
47 |
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
48 |
|
@@ -119,6 +113,7 @@ class DDPM(pl.LightningModule):
|
|
119 |
if self.learn_logvar:
|
120 |
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
121 |
|
|
|
122 |
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
123 |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
124 |
if exists(given_betas):
|
@@ -1188,7 +1183,6 @@ class LatentDiffusion(DDPM):
|
|
1188 |
|
1189 |
if start_T is not None:
|
1190 |
timesteps = min(timesteps, start_T)
|
1191 |
-
print(timesteps, start_T)
|
1192 |
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1193 |
range(0, timesteps))
|
1194 |
|
@@ -1222,7 +1216,7 @@ class LatentDiffusion(DDPM):
|
|
1222 |
@torch.no_grad()
|
1223 |
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1224 |
verbose=True, timesteps=None, quantize_denoised=False,
|
1225 |
-
mask=None, x0=None, shape=None):
|
1226 |
if shape is None:
|
1227 |
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1228 |
if cond is not None:
|
@@ -1238,10 +1232,28 @@ class LatentDiffusion(DDPM):
|
|
1238 |
mask=mask, x0=x0)
|
1239 |
|
1240 |
@torch.no_grad()
|
1241 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1242 |
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1243 |
plot_diffusion_rows=True, **kwargs):
|
1244 |
-
|
|
|
|
|
1245 |
log = dict()
|
1246 |
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1247 |
return_first_stage_outputs=True,
|
@@ -1288,7 +1300,9 @@ class LatentDiffusion(DDPM):
|
|
1288 |
if sample:
|
1289 |
# get denoise row
|
1290 |
with self.ema_scope("Plotting"):
|
1291 |
-
samples, z_denoise_row = self.
|
|
|
|
|
1292 |
x_samples = self.decode_first_stage(samples)
|
1293 |
log["samples"] = x_samples
|
1294 |
if plot_denoise_rows:
|
@@ -1299,8 +1313,11 @@ class LatentDiffusion(DDPM):
|
|
1299 |
self.first_stage_model, IdentityFirstStage):
|
1300 |
# also display when quantizing x0 while sampling
|
1301 |
with self.ema_scope("Plotting Quantized Denoised"):
|
1302 |
-
samples, z_denoise_row = self.
|
1303 |
-
|
|
|
|
|
|
|
1304 |
x_samples = self.decode_first_stage(samples.to(self.device))
|
1305 |
log["samples_x0_quantized"] = x_samples
|
1306 |
|
@@ -1312,19 +1329,17 @@ class LatentDiffusion(DDPM):
|
|
1312 |
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1313 |
mask = mask[:, None, ...]
|
1314 |
with self.ema_scope("Plotting Inpaint"):
|
1315 |
-
|
1316 |
-
|
|
|
1317 |
x_samples = self.decode_first_stage(samples.to(self.device))
|
1318 |
log["samples_inpainting"] = x_samples
|
1319 |
log["mask"] = mask
|
1320 |
-
if plot_denoise_rows:
|
1321 |
-
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
1322 |
-
log["denoise_row_inpainting"] = denoise_grid
|
1323 |
|
1324 |
# outpaint
|
1325 |
with self.ema_scope("Plotting Outpaint"):
|
1326 |
-
samples = self.
|
1327 |
-
|
1328 |
x_samples = self.decode_first_stage(samples.to(self.device))
|
1329 |
log["samples_outpainting"] = x_samples
|
1330 |
|
|
|
16 |
from functools import partial
|
17 |
from tqdm import tqdm
|
18 |
from torchvision.utils import make_grid
|
|
|
19 |
from pytorch_lightning.utilities.distributed import rank_zero_only
|
20 |
|
21 |
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
|
22 |
from ldm.modules.ema import LitEma
|
23 |
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
|
24 |
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
|
25 |
+
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
26 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
27 |
|
28 |
|
29 |
__conditioning_keys__ = {'concat': 'c_concat',
|
|
|
37 |
return self
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
def uniform_on_device(r1, r2, shape, device):
|
41 |
return (r1 - r2) * torch.rand(*shape, device=device) + r2
|
42 |
|
|
|
113 |
if self.learn_logvar:
|
114 |
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
115 |
|
116 |
+
|
117 |
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
118 |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
119 |
if exists(given_betas):
|
|
|
1183 |
|
1184 |
if start_T is not None:
|
1185 |
timesteps = min(timesteps, start_T)
|
|
|
1186 |
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed(
|
1187 |
range(0, timesteps))
|
1188 |
|
|
|
1216 |
@torch.no_grad()
|
1217 |
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None,
|
1218 |
verbose=True, timesteps=None, quantize_denoised=False,
|
1219 |
+
mask=None, x0=None, shape=None,**kwargs):
|
1220 |
if shape is None:
|
1221 |
shape = (batch_size, self.channels, self.image_size, self.image_size)
|
1222 |
if cond is not None:
|
|
|
1232 |
mask=mask, x0=x0)
|
1233 |
|
1234 |
@torch.no_grad()
|
1235 |
+
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs):
|
1236 |
+
|
1237 |
+
if ddim:
|
1238 |
+
ddim_sampler = DDIMSampler(self)
|
1239 |
+
shape = (self.channels, self.image_size, self.image_size)
|
1240 |
+
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size,
|
1241 |
+
shape,cond,verbose=False,**kwargs)
|
1242 |
+
|
1243 |
+
else:
|
1244 |
+
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
|
1245 |
+
return_intermediates=True,**kwargs)
|
1246 |
+
|
1247 |
+
return samples, intermediates
|
1248 |
+
|
1249 |
+
|
1250 |
+
@torch.no_grad()
|
1251 |
+
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
1252 |
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
1253 |
plot_diffusion_rows=True, **kwargs):
|
1254 |
+
|
1255 |
+
use_ddim = ddim_steps is not None
|
1256 |
+
|
1257 |
log = dict()
|
1258 |
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key,
|
1259 |
return_first_stage_outputs=True,
|
|
|
1300 |
if sample:
|
1301 |
# get denoise row
|
1302 |
with self.ema_scope("Plotting"):
|
1303 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1304 |
+
ddim_steps=ddim_steps,eta=ddim_eta)
|
1305 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
1306 |
x_samples = self.decode_first_stage(samples)
|
1307 |
log["samples"] = x_samples
|
1308 |
if plot_denoise_rows:
|
|
|
1313 |
self.first_stage_model, IdentityFirstStage):
|
1314 |
# also display when quantizing x0 while sampling
|
1315 |
with self.ema_scope("Plotting Quantized Denoised"):
|
1316 |
+
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
|
1317 |
+
ddim_steps=ddim_steps,eta=ddim_eta,
|
1318 |
+
quantize_denoised=True)
|
1319 |
+
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True,
|
1320 |
+
# quantize_denoised=True)
|
1321 |
x_samples = self.decode_first_stage(samples.to(self.device))
|
1322 |
log["samples_x0_quantized"] = x_samples
|
1323 |
|
|
|
1329 |
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0.
|
1330 |
mask = mask[:, None, ...]
|
1331 |
with self.ema_scope("Plotting Inpaint"):
|
1332 |
+
|
1333 |
+
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta,
|
1334 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1335 |
x_samples = self.decode_first_stage(samples.to(self.device))
|
1336 |
log["samples_inpainting"] = x_samples
|
1337 |
log["mask"] = mask
|
|
|
|
|
|
|
1338 |
|
1339 |
# outpaint
|
1340 |
with self.ema_scope("Plotting Outpaint"):
|
1341 |
+
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta,
|
1342 |
+
ddim_steps=ddim_steps, x0=z[:N], mask=mask)
|
1343 |
x_samples = self.decode_first_stage(samples.to(self.device))
|
1344 |
log["samples_outpainting"] = x_samples
|
1345 |
|
ldm/modules/diffusionmodules/util.py
CHANGED
@@ -259,3 +259,9 @@ class HybridConditioner(nn.Module):
|
|
259 |
c_concat = self.concat_conditioner(c_concat)
|
260 |
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
261 |
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
c_concat = self.concat_conditioner(c_concat)
|
260 |
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
261 |
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|
262 |
+
|
263 |
+
|
264 |
+
def noise_like(shape, device, repeat=False):
|
265 |
+
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
|
266 |
+
noise = lambda: torch.randn(shape, device=device)
|
267 |
+
return repeat_noise() if repeat else noise()
|
main.py
CHANGED
@@ -676,7 +676,10 @@ if __name__ == "__main__":
|
|
676 |
ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
|
677 |
else:
|
678 |
ngpu = 1
|
679 |
-
accumulate_grad_batches
|
|
|
|
|
|
|
680 |
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
|
681 |
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
|
682 |
if opt.scale_lr:
|
|
|
676 |
ngpu = len(lightning_config.trainer.gpus.strip(",").split(','))
|
677 |
else:
|
678 |
ngpu = 1
|
679 |
+
if 'accumulate_grad_batches' in lightning_config.trainer:
|
680 |
+
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
|
681 |
+
else:
|
682 |
+
accumulate_grad_batches = 1
|
683 |
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
|
684 |
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
|
685 |
if opt.scale_lr:
|
models/ldm/semantic_synthesis256/config.yaml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model:
|
2 |
+
base_learning_rate: 1.0e-06
|
3 |
+
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
4 |
+
params:
|
5 |
+
linear_start: 0.0015
|
6 |
+
linear_end: 0.0205
|
7 |
+
log_every_t: 100
|
8 |
+
timesteps: 1000
|
9 |
+
loss_type: l1
|
10 |
+
first_stage_key: image
|
11 |
+
cond_stage_key: segmentation
|
12 |
+
image_size: 64
|
13 |
+
channels: 3
|
14 |
+
concat_mode: true
|
15 |
+
cond_stage_trainable: true
|
16 |
+
unet_config:
|
17 |
+
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
18 |
+
params:
|
19 |
+
image_size: 64
|
20 |
+
in_channels: 6
|
21 |
+
out_channels: 3
|
22 |
+
model_channels: 128
|
23 |
+
attention_resolutions:
|
24 |
+
- 32
|
25 |
+
- 16
|
26 |
+
- 8
|
27 |
+
num_res_blocks: 2
|
28 |
+
channel_mult:
|
29 |
+
- 1
|
30 |
+
- 4
|
31 |
+
- 8
|
32 |
+
num_heads: 8
|
33 |
+
first_stage_config:
|
34 |
+
target: ldm.models.autoencoder.VQModelInterface
|
35 |
+
params:
|
36 |
+
embed_dim: 3
|
37 |
+
n_embed: 8192
|
38 |
+
ddconfig:
|
39 |
+
double_z: false
|
40 |
+
z_channels: 3
|
41 |
+
resolution: 256
|
42 |
+
in_channels: 3
|
43 |
+
out_ch: 3
|
44 |
+
ch: 128
|
45 |
+
ch_mult:
|
46 |
+
- 1
|
47 |
+
- 2
|
48 |
+
- 4
|
49 |
+
num_res_blocks: 2
|
50 |
+
attn_resolutions: []
|
51 |
+
dropout: 0.0
|
52 |
+
lossconfig:
|
53 |
+
target: torch.nn.Identity
|
54 |
+
cond_stage_config:
|
55 |
+
target: ldm.modules.encoders.modules.SpatialRescaler
|
56 |
+
params:
|
57 |
+
n_stages: 2
|
58 |
+
in_channels: 182
|
59 |
+
out_channels: 3
|
scripts/download_first_stages.sh
CHANGED
@@ -4,10 +4,10 @@ wget -O models/first_stage_models/kl-f8/model.zip https://ommer-lab.com/files/la
|
|
4 |
wget -O models/first_stage_models/kl-f16/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f16.zip
|
5 |
wget -O models/first_stage_models/kl-f32/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f32.zip
|
6 |
wget -O models/first_stage_models/vq-f4/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4.zip
|
7 |
-
wget -O models/first_stage_models/vq-f4-noattn/model.zip https://
|
8 |
wget -O models/first_stage_models/vq-f8/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8.zip
|
9 |
wget -O models/first_stage_models/vq-f8-n256/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip
|
10 |
-
wget -O models/first_stage_models/vq-f16/model.zip https://
|
11 |
|
12 |
|
13 |
|
|
|
4 |
wget -O models/first_stage_models/kl-f16/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f16.zip
|
5 |
wget -O models/first_stage_models/kl-f32/model.zip https://ommer-lab.com/files/latent-diffusion/kl-f32.zip
|
6 |
wget -O models/first_stage_models/vq-f4/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4.zip
|
7 |
+
wget -O models/first_stage_models/vq-f4-noattn/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f4-noattn.zip
|
8 |
wget -O models/first_stage_models/vq-f8/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8.zip
|
9 |
wget -O models/first_stage_models/vq-f8-n256/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f8-n256.zip
|
10 |
+
wget -O models/first_stage_models/vq-f16/model.zip https://ommer-lab.com/files/latent-diffusion/vq-f16.zip
|
11 |
|
12 |
|
13 |
|
scripts/download_models.sh
CHANGED
@@ -6,9 +6,10 @@ wget -O models/ldm/lsun_beds256/lsun_beds-256.zip https://ommer-lab.com/files/la
|
|
6 |
wget -O models/ldm/text2img256/model.zip https://ommer-lab.com/files/latent-diffusion/text2img.zip
|
7 |
wget -O models/ldm/cin256/model.zip https://ommer-lab.com/files/latent-diffusion/cin.zip
|
8 |
wget -O models/ldm/semantic_synthesis512/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip
|
|
|
9 |
wget -O models/ldm/bsr_sr/model.zip https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip
|
10 |
wget -O models/ldm/layout2img-openimages256/model.zip https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip
|
11 |
-
wget -O models/ldm/inpainting_big/
|
12 |
|
13 |
|
14 |
|
@@ -33,10 +34,16 @@ unzip -o model.zip
|
|
33 |
cd ../semantic_synthesis512
|
34 |
unzip -o model.zip
|
35 |
|
|
|
|
|
|
|
36 |
cd ../bsr_sr
|
37 |
unzip -o model.zip
|
38 |
|
39 |
cd ../layout2img-openimages256
|
40 |
unzip -o model.zip
|
41 |
|
|
|
|
|
|
|
42 |
cd ../..
|
|
|
6 |
wget -O models/ldm/text2img256/model.zip https://ommer-lab.com/files/latent-diffusion/text2img.zip
|
7 |
wget -O models/ldm/cin256/model.zip https://ommer-lab.com/files/latent-diffusion/cin.zip
|
8 |
wget -O models/ldm/semantic_synthesis512/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis.zip
|
9 |
+
wget -O models/ldm/semantic_synthesis256/model.zip https://ommer-lab.com/files/latent-diffusion/semantic_synthesis256.zip
|
10 |
wget -O models/ldm/bsr_sr/model.zip https://ommer-lab.com/files/latent-diffusion/sr_bsr.zip
|
11 |
wget -O models/ldm/layout2img-openimages256/model.zip https://ommer-lab.com/files/latent-diffusion/layout2img_model.zip
|
12 |
+
wget -O models/ldm/inpainting_big/model.zip https://ommer-lab.com/files/latent-diffusion/inpainting_big.zip
|
13 |
|
14 |
|
15 |
|
|
|
34 |
cd ../semantic_synthesis512
|
35 |
unzip -o model.zip
|
36 |
|
37 |
+
cd ../semantic_synthesis256
|
38 |
+
unzip -o model.zip
|
39 |
+
|
40 |
cd ../bsr_sr
|
41 |
unzip -o model.zip
|
42 |
|
43 |
cd ../layout2img-openimages256
|
44 |
unzip -o model.zip
|
45 |
|
46 |
+
cd ../inpainting_big
|
47 |
+
unzip -o model.zip
|
48 |
+
|
49 |
cd ../..
|