Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,024 Bytes
ec505fb ffd8d8a ec505fb 2ee51b3 ec505fb 977b2d0 ec505fb 977b2d0 ec505fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import subprocess
import sys
import shlex
import spaces
# install packages for mamba
def install():
print("Install personal packages", flush=True)
subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/archive/refs/tags/v1.4.0.tar.gz"))
subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/archive/refs/tags/v2.2.2.tar.gz"))
install()
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL = "tiiuae/falcon-mamba-7b-instruct"
TITLE = "<h1><center>FalconMamba-7b playground</center></h1>"
SUB_TITLE = """<center>FalconMamba is a new model released by Technology Innovation Institute (TII) in Abu Dhabi. The model is open source and available within the Hugging Face ecosystem for anyone to use it for their research or application purpose. Refer to <a href="https://hf.co/blog/falconmamba">the HF release blogpost</a> or <a href="https://www.tii.ae/news/uaes-technology-innovation-institute-revolutionizes-ai-language-models-new-architecture">the official announcement</a> for more details. This interface has been created for quick validation purposes, do not use it for production.</center>"""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
END_MESSAGE = """
\n
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
).to(device)
if device == "cuda":
model = torch.compile(model)
@spaces.GPU
def stream_chat(
message: str,
history: list,
temperature: float = 0.3,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
print(f'history: {history}')
conversation = []
for prompt, answer in history:
conversation.extend([
{"role": "user", "content": prompt},
{"role": "assistant", "content": answer},
])
conversation.append({"role": "user", "content": message})
input_text = tokenizer.apply_chat_template(conversation, tokenize=False)
input_text += "<|im_start|>assistant\n"
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
streamer=streamer,
pad_token_id = 10,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
print(f'response: {buffer}')
chatbot = gr.Chatbot(height=600)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.HTML(SUB_TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=8192,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["Hello there, can you suggest few places to visit in UAE?"],
["What UAE is known for?"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch() |