File size: 10,043 Bytes
72cc672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda8c36
72cc672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2965039
72cc672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import torch
from threading import Thread
from typing import List, Optional, Tuple, Dict
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
import spaces
from pathlib import Path
from huggingface_hub import CommitScheduler
import uuid
import json


# Constants
SYSTEM_PROMPT = """You are a helpful friendly assistant Falcon3 from TII, try to follow instructions as much as possible. Be accurate and brief. The Technology Innovation Institute (TII) is a leading global research center dedicated to pushing the frontiers of knowledge. Our teams of scientists, researchers and engineers work in an open, flexible and agile environment to deliver discovery science and transformative technologies.\nWe are part of the Abu Dhabi Government's Advanced Technology Research Council (ATRC), which oversees technology research in the emirate."""
device = "cuda" if torch.cuda.is_available() else "cpu"
TITLE = "<h1><center>Falcon3 Instruct Playground</center></h1>"
SUB_TITLE = "<h2><center>Try out also <a href='https://chat.falconllm.tii.ae/'>our demo</a> powered by <a href='https://www.openinnovation.ai/'>OpenInnovation AI</a> </center></h2>"

# Custom CSS with dark theme
CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}

h3 {
    text-align: center;
/* Fix for chat container */
.chat-container {
    height: 500px !important;
    overflow-y: auto !important;
    flex-direction: column !important;
}

.messages-container {
    flex-grow: 1 !important;
    overflow-y: auto !important;
    padding-right: 10px !important;
}

.contain {
    height: 100% !important;
}

.model-selector {
    margin: 1em auto !important;
    max-width: 500px !important;
    background: #1f2937 !important;
    padding: 1em !important;
    border-radius: 8px !important;
}

/* Style for radio group container */
.radio-group {
    background: #1f2937 !important;
    padding: 1em !important;
    border-radius: 8px !important;
    gap: 10px !important;
}

/* Style for radio options */
.radio-group label {
    background: #374151 !important;
    border: none !important;
    border-radius: 8px !important;
    padding: 8px 16px !important;
    color: white !important;
}

/* Selected radio option */
.radio-group label[data-selected="true"] {
    background: #6366f1 !important;
    color: white !important;
}

button {
    border-radius: 8px !important;
}
"""

# Global variables to store loaded models and tokenizers
loaded_models = {}
loaded_tokenizers = {}

def load_model(model_size: str):
    """Load model and tokenizer based on selected size"""
    if model_size not in loaded_models:
        model_map = {
            "1B": "tiiuae/Falcon3-1B-Instruct",
            "3B": "tiiuae/Falcon3-3B-Instruct",
            "7B": "tiiuae/Falcon3-7B-Instruct",
            "10B": "tiiuae/Falcon3-10B-Instruct",
            
        }
        
        model_path = model_map[model_size]
        print(f"Loading model: {model_path}")
        
        loaded_models[model_size] = AutoModelForCausalLM.from_pretrained(
            model_path,
            torch_dtype=torch.bfloat16,
        ).to(device)
        loaded_tokenizers[model_size] = AutoTokenizer.from_pretrained(model_path)
    
    return loaded_models[model_size], loaded_tokenizers[model_size]

#load_model("10B")
#load_model("3B")
#load_model("1B")
load_model("7B")


logs_id = os.getenv("LOGS_ID")
logs_token = os.getenv("HF_LOGS_TOKEN")

logs_file = Path("logs/") / f"data_{uuid.uuid4()}.json"
logs_folder = logs_file.parent

scheduler = CommitScheduler(
    repo_id=logs_id,
    repo_type="dataset",
    folder_path=logs_folder,
    path_in_repo="data",
    every=5,
    token=logs_token,
    private=True,
)

@spaces.GPU
def stream_chat(
    message: str,
    history: list,
    model_size: str,
    temperature: float = 0.3,
    max_new_tokens: int = 1024,
    top_p: float = 1.0,
    top_k: int = 20,
    repetition_penalty: float = 1.2,
):
    model, tokenizer = load_model(model_size)
    
    # Create new history list with current message
    new_history = history + [[message, ""]]
    
    conversation = []
    # Only include previous messages in the conversation
    for prompt, answer in history:
        conversation.extend([
            {"role": "system", "content": SYSTEM_PROMPT},
            {"role": "user", "content": prompt},
            {"role": "assistant", "content": answer},
        ])
    
    conversation.append({"role": "user", "content": message})
    
    input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=inputs,
        max_new_tokens=max_new_tokens,
        do_sample=False if temperature == 0 else True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        repetition_penalty=repetition_penalty,
        streamer=streamer,
        pad_token_id=tokenizer.pad_token_id,
    )
    
    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
    
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        buffer = buffer.replace("\nUser", "")
        buffer = buffer.replace("\nSystem", "")
        new_history[-1][1] = buffer
        yield new_history

    with scheduler.lock:
        with logs_file.open("a") as f:
            f.write(json.dumps({"input": input_text.replace(SYSTEM_PROMPT, ""), "output": buffer.replace(SYSTEM_PROMPT, ""), "model": model_size}))
            f.write("\n")

def clear_input():
    return ""

def add_message(message: str, history: list):
    if message.strip() != "":
        history = history + [[message, ""]]
    return history

def clear_session() -> Tuple[str, List]:
    return '', []

def choose_model(radio: str) -> Tuple[gr.Markdown, gr.Chatbot, str]:
    mark_ = gr.Markdown(value=f"<center><font size=8>Falcon3 {radio} ChatBot</center>")
    chatbot = gr.Chatbot(label=f'Falcon3-{radio}-Instruct', value=[])
    return mark_, chatbot, ""

def main():
    with gr.Blocks(css=CSS, theme="soft") as demo:
        gr.HTML(TITLE)
        gr.HTML(SUB_TITLE)
        gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
        with gr.Row():
            options_models = ["1B", "3B", "7B", "10B"]
            radio = gr.Radio(
                choices=options_models,
                label="Model Size:",
                value="7B",
                elem_classes="radio-group"
            )
        
        with gr.Row():
            with gr.Accordion(label="Chat Interface", open=True):
                mark_ = gr.Markdown("""<center><font size=8>Falcon3 7B ChatBot </center>""")
                
                chatbot = gr.Chatbot(
                    label='Falcon3-7B-Instruct',
                    height=500,
                    container=True,
                    elem_classes=["chat-container"]
                )
                
                with gr.Accordion(label="⚙️ Parameters", open=False):
                    temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature")
                    max_new_tokens = gr.Slider(minimum=128, maximum=32768, step=128, value=1024, label="Max new tokens")
                    top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Top-p")
                    top_k = gr.Slider(minimum=1, maximum=100, step=1, value=20, label="Top-k")
                    repetition_penalty = gr.Slider(minimum=1.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty")
                
                textbox = gr.Textbox(lines=1, label='Input')
                
                with gr.Row():
                    clear_history = gr.Button("🧹 Clear History")
                    submit = gr.Button("🚀 Send")
                
                # Chain of events for submit button
                    submit_event = submit.click(
                        fn=add_message,
                        inputs=[textbox, chatbot],
                        outputs=chatbot,
                        queue=False
                    ).then(
                        fn=clear_input,
                        outputs=textbox,
                        queue=False
                    ).then(
                        fn=stream_chat,
                        inputs=[textbox, chatbot, radio, 
                               temperature, max_new_tokens, top_p, top_k, repetition_penalty],
                        outputs=chatbot,
                        show_progress=True
                    )

                    # Chain of events for enter key
                    enter_event = textbox.submit(
                        fn=add_message,
                        inputs=[textbox, chatbot],
                        outputs=chatbot,
                        queue=False
                    ).then(
                        fn=clear_input,
                        outputs=textbox,
                        queue=False
                    ).then(
                        fn=stream_chat,
                        inputs=[textbox, chatbot, radio,
                               temperature, max_new_tokens, top_p, top_k, repetition_penalty],
                        outputs=chatbot,
                        show_progress=True
                    )
                    
                    clear_history.click(fn=clear_session,
                                      outputs=[textbox, chatbot])
        
        radio.change(choose_model,
                    inputs=[radio],
                    outputs=[mark_, chatbot, textbox])
        
    
    #demo.queue(api_open=False, default_concurrency_limit=40)
    demo.launch()

if __name__ == "__main__":
    main()