File size: 15,329 Bytes
825c8bf
 
9c0c5c8
 
 
 
 
 
 
 
1dea888
2561128
7aaaf62
9c0c5c8
 
 
 
 
 
 
 
2561128
9c0c5c8
c17b696
9c0c5c8
c17b696
2561128
9c0c5c8
 
 
 
 
825c8bf
 
9c0c5c8
9a9737e
9c0c5c8
 
 
 
 
327bccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5fc25
327bccf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a9737e
af8111a
 
 
 
 
327bccf
 
 
 
 
9a9737e
b929114
af8111a
 
 
 
 
 
 
327bccf
 
af8111a
b929114
 
327bccf
21c77d0
327bccf
21c77d0
327bccf
b929114
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e8b723
9a9737e
001a426
07ba0fd
9a9737e
001a426
07ba0fd
001a426
9c0c5c8
 
 
 
 
 
 
 
 
 
 
 
c17b696
 
9c0c5c8
 
 
c17b696
9c0c5c8
1dea888
825c8bf
1dea888
 
 
 
9c0c5c8
 
 
 
 
 
 
 
327bccf
 
5bc60f9
 
 
1dea888
9c0c5c8
 
c17b696
 
9c0c5c8
b929114
 
 
 
 
 
 
 
 
 
 
 
9c0c5c8
 
8f292f9
327bccf
8f292f9
 
 
 
21c77d0
 
8f292f9
9c0c5c8
 
 
 
 
1dea888
 
c17b696
1dea888
9c0c5c8
 
 
 
9a9737e
 
9c0c5c8
 
 
8f292f9
9c0c5c8
 
 
9a9737e
 
9c0c5c8
 
 
 
 
 
399a445
 
9a9737e
1dea888
 
 
 
 
9c0c5c8
 
 
 
 
 
 
 
 
 
1bb3e27
 
 
327bccf
2561128
 
 
 
 
 
9a9737e
2561128
9a9737e
8f292f9
 
9a9737e
 
c17b696
b3a363d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bf6ce9
21c77d0
9c0c5c8
2561128
 
 
 
 
9c0c5c8
 
2561128
 
 
 
 
9c0c5c8
2561128
 
1dea888
e97d748
c17b696
e97d748
2561128
1dea888
9c0c5c8
 
 
 
 
 
c17b696
 
9c0c5c8
 
 
1dea888
 
 
 
 
 
9c0c5c8
65fa65c
9c0c5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
b929114
9c0c5c8
 
 
b929114
 
9c0c5c8
 
65fa65c
9c0c5c8
 
 
 
 
 
 
 
 
c17b696
9c0c5c8
1dea888
5bc60f9
 
b929114
 
001a426
9a9737e
 
 
 
 
 
 
 
9c0c5c8
 
 
 
 
 
 
1dea888
 
 
e66133f
 
 
9c0c5c8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
# based on https://github.com/huggingface/diffusers/blob/main/examples/train_unconditional.py

import argparse
import os

import torch
import torch.nn.functional as F

from accelerate import Accelerator
from accelerate.logging import get_logger
from datasets import load_from_disk, load_dataset
from diffusers import (DiffusionPipeline, DDPMScheduler, UNet2DModel,
                       DDIMScheduler, AutoencoderKL)
from diffusers.hub_utils import init_git_repo, push_to_hub
from diffusers.optimization import get_scheduler
from diffusers.training_utils import EMAModel
from torchvision.transforms import (
    Compose,
    Normalize,
    ToTensor,
)
import numpy as np
from tqdm.auto import tqdm
from librosa.util import normalize

from audiodiffusion.mel import Mel
from audiodiffusion import LatentAudioDiffusionPipeline, AudioDiffusionPipeline

logger = get_logger(__name__)


def main(args):
    output_dir = os.environ.get("SM_MODEL_DIR", None) or args.output_dir
    logging_dir = os.path.join(output_dir, args.logging_dir)
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with="tensorboard",
        logging_dir=logging_dir,
    )

    if args.dataset_name is not None:
        if os.path.exists(args.dataset_name):
            dataset = load_from_disk(args.dataset_name,
                                     args.dataset_config_name)["train"]
        else:
            dataset = load_dataset(
                args.dataset_name,
                args.dataset_config_name,
                cache_dir=args.cache_dir,
                use_auth_token=True if args.use_auth_token else None,
                split="train",
            )
    else:
        dataset = load_dataset(
            "imagefolder",
            data_dir=args.train_data_dir,
            cache_dir=args.cache_dir,
            split="train",
        )
    # Determine image resolution
    resolution = dataset[0]['image'].height, dataset[0]['image'].width

    augmentations = Compose([
        ToTensor(),
        Normalize([0.5], [0.5]),
    ])

    def transforms(examples):
        if args.vae is not None and vqvae.config['in_channels'] == 3:
            images = [
                augmentations(image.convert('RGB'))
                for image in examples["image"]
            ]
        else:
            images = [augmentations(image) for image in examples["image"]]
        return {"input": images}

    dataset.set_transform(transforms)
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True)

    vqvae = None
    if args.vae is not None:
        try:
            vqvae = AutoencoderKL.from_pretrained(args.vae)
        except EnvironmentError:
            vqvae = LatentAudioDiffusionPipeline.from_pretrained(
                args.vae).vqvae
        # Determine latent resolution
        with torch.no_grad():
            latent_resolution = vqvae.encode(
                torch.zeros((1, 1) +
                            resolution)).latent_dist.sample().shape[2:]

    if args.from_pretrained is not None:
        pipeline = {
            'LatentAudioDiffusionPipeline': LatentAudioDiffusionPipeline,
            'AudioDiffusionPipeline': AudioDiffusionPipeline
        }.get(
            DiffusionPipeline.get_config_dict(
                args.from_pretrained)['_class_name'], AudioDiffusionPipeline)
        pipeline = pipeline.from_pretrained(args.from_pretrained)
        model = pipeline.unet
        if hasattr(pipeline, 'vqvae'):
            vqvae = pipeline.vqvae
    else:
        model = UNet2DModel(
            sample_size=resolution if vqvae is None else latent_resolution,
            in_channels=1
            if vqvae is None else vqvae.config['latent_channels'],
            out_channels=1
            if vqvae is None else vqvae.config['latent_channels'],
            layers_per_block=2,
            block_out_channels=(128, 128, 256, 256, 512, 512),
            down_block_types=(
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "DownBlock2D",
                "AttnDownBlock2D",
                "DownBlock2D",
            ),
            up_block_types=(
                "UpBlock2D",
                "AttnUpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
                "UpBlock2D",
            ),
        )

    if args.scheduler == "ddpm":
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.num_train_steps)
    else:
        noise_scheduler = DDIMScheduler(
            num_train_timesteps=args.num_train_steps)

    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs) //
        args.gradient_accumulation_steps,
    )

    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler)

    ema_model = EMAModel(
        getattr(model, "module", model),
        inv_gamma=args.ema_inv_gamma,
        power=args.ema_power,
        max_value=args.ema_max_decay,
    )

    if args.push_to_hub:
        repo = init_git_repo(args, at_init=True)

    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

    mel = Mel(x_res=resolution[1],
              y_res=resolution[0],
              hop_length=args.hop_length,
              sample_rate=args.sample_rate,
              n_fft=args.n_fft)

    global_step = 0
    for epoch in range(args.num_epochs):
        progress_bar = tqdm(total=len(train_dataloader),
                            disable=not accelerator.is_local_main_process)
        progress_bar.set_description(f"Epoch {epoch}")

        if epoch < args.start_epoch:
            for step in range(len(train_dataloader)):
                optimizer.step()
                lr_scheduler.step()
                progress_bar.update(1)
                global_step += 1
            if epoch == args.start_epoch - 1 and args.use_ema:
                ema_model.optimization_step = global_step
            continue

        model.train()
        for step, batch in enumerate(train_dataloader):
            clean_images = batch["input"]

            if vqvae is not None:
                vqvae.to(clean_images.device)
                with torch.no_grad():
                    clean_images = vqvae.encode(
                        clean_images).latent_dist.sample()
                # Scale latent images to ensure approximately unit variance
                clean_images = clean_images * 0.18215

            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
            bsz = clean_images.shape[0]
            # Sample a random timestep for each image
            timesteps = torch.randint(
                0,
                noise_scheduler.num_train_timesteps,
                (bsz, ),
                device=clean_images.device,
            ).long()

            # Add noise to the clean images according to the noise magnitude at each timestep
            # (this is the forward diffusion process)
            noisy_images = noise_scheduler.add_noise(clean_images, noise,
                                                     timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
                noise_pred = model(noisy_images, timesteps)["sample"]
                loss = F.mse_loss(noise_pred, noise)
                accelerator.backward(loss)

                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
                optimizer.step()
                lr_scheduler.step()
                if args.use_ema:
                    ema_model.step(model)
                optimizer.zero_grad()

            progress_bar.update(1)
            global_step += 1

            logs = {
                "loss": loss.detach().item(),
                "lr": lr_scheduler.get_last_lr()[0],
                "step": global_step,
            }
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
        progress_bar.close()

        accelerator.wait_for_everyone()

        # Generate sample images for visual inspection
        if accelerator.is_main_process:
            if (
                    epoch + 1
            ) % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                if vqvae is not None:
                    pipeline = LatentAudioDiffusionPipeline(
                        unet=accelerator.unwrap_model(
                            ema_model.averaged_model if args.use_ema else model
                        ),
                        vqvae=vqvae,
                        scheduler=noise_scheduler)
                else:
                    pipeline = AudioDiffusionPipeline(
                        unet=accelerator.unwrap_model(
                            ema_model.averaged_model if args.use_ema else model
                        ),
                        scheduler=noise_scheduler,
                    )

                # save the model
                if args.push_to_hub:
                    try:
                        push_to_hub(
                            args,
                            pipeline,
                            repo,
                            commit_message=f"Epoch {epoch}",
                            blocking=False,
                        )
                    except NameError:  # current version of diffusers has a little bug
                        pass
                else:
                    pipeline.save_pretrained(output_dir)

            if (epoch + 1) % args.save_images_epochs == 0:
                generator = torch.manual_seed(42)
                # run pipeline in inference (sample random noise and denoise)
                images, (sample_rate, audios) = pipeline(
                    mel=mel,
                    generator=generator,
                    batch_size=args.eval_batch_size,
                )

                # denormalize the images and save to tensorboard
                images = np.array([
                    np.frombuffer(image.tobytes(), dtype="uint8").reshape(
                        (len(image.getbands()), image.height, image.width))
                    for image in images
                ])
                accelerator.trackers[0].writer.add_images(
                    "test_samples", images, epoch)
                for _, audio in enumerate(audios):
                    accelerator.trackers[0].writer.add_audio(
                        f"test_audio_{_}",
                        normalize(audio),
                        epoch,
                        sample_rate=sample_rate,
                    )
        accelerator.wait_for_everyone()

    accelerator.end_training()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description="Simple example of a training script.")
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--dataset_name", type=str, default=None)
    parser.add_argument("--dataset_config_name", type=str, default=None)
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help="A folder containing the training data.",
    )
    parser.add_argument("--output_dir", type=str, default="ddpm-model-64")
    parser.add_argument("--overwrite_output_dir", type=bool, default=False)
    parser.add_argument("--cache_dir", type=str, default=None)
    parser.add_argument("--train_batch_size", type=int, default=16)
    parser.add_argument("--eval_batch_size", type=int, default=16)
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10)
    parser.add_argument("--save_model_epochs", type=int, default=10)
    parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
    parser.add_argument("--learning_rate", type=float, default=1e-4)
    parser.add_argument("--lr_scheduler", type=str, default="cosine")
    parser.add_argument("--lr_warmup_steps", type=int, default=500)
    parser.add_argument("--adam_beta1", type=float, default=0.95)
    parser.add_argument("--adam_beta2", type=float, default=0.999)
    parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
    parser.add_argument("--adam_epsilon", type=float, default=1e-08)
    parser.add_argument("--use_ema", type=bool, default=True)
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
    parser.add_argument("--ema_power", type=float, default=3 / 4)
    parser.add_argument("--ema_max_decay", type=float, default=0.9999)
    parser.add_argument("--push_to_hub", type=bool, default=False)
    parser.add_argument("--use_auth_token", type=bool, default=False)
    parser.add_argument("--hub_token", type=str, default=None)
    parser.add_argument("--hub_model_id", type=str, default=None)
    parser.add_argument("--hub_private_repo", type=bool, default=False)
    parser.add_argument("--logging_dir", type=str, default="logs")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."),
    )
    parser.add_argument("--hop_length", type=int, default=512)
    parser.add_argument("--sample_rate", type=int, default=22050)
    parser.add_argument("--n_fft", type=int, default=2048)
    parser.add_argument("--from_pretrained", type=str, default=None)
    parser.add_argument("--start_epoch", type=int, default=0)
    parser.add_argument("--num_train_steps", type=int, default=1000)
    parser.add_argument("--scheduler",
                        type=str,
                        default="ddpm",
                        help="ddpm or ddim")
    parser.add_argument("--vae",
                        type=str,
                        default=None,
                        help="pretrained VAE model for latent diffusion")

    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError(
            "You must specify either a dataset name from the hub or a train data directory."
        )
    if args.dataset_name is not None and args.dataset_name == args.hub_model_id:
        raise ValueError(
            "The local dataset name must be different from the hub model id.")

    main(args)