Spaces:
Runtime error
Runtime error
no flip, start training from epoch
Browse files- src/train_unconditional.py +43 -29
src/train_unconditional.py
CHANGED
@@ -20,7 +20,6 @@ from torchvision.transforms import (
|
|
20 |
Compose,
|
21 |
InterpolationMode,
|
22 |
Normalize,
|
23 |
-
RandomHorizontalFlip,
|
24 |
Resize,
|
25 |
ToTensor,
|
26 |
)
|
@@ -40,29 +39,32 @@ def main(args):
|
|
40 |
logging_dir=logging_dir,
|
41 |
)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
66 |
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt")
|
67 |
optimizer = torch.optim.AdamW(
|
68 |
model.parameters(),
|
@@ -76,7 +78,6 @@ def main(args):
|
|
76 |
[
|
77 |
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
|
78 |
CenterCrop(args.resolution),
|
79 |
-
RandomHorizontalFlip(),
|
80 |
ToTensor(),
|
81 |
Normalize([0.5], [0.5]),
|
82 |
]
|
@@ -142,11 +143,22 @@ def main(args):
|
|
142 |
|
143 |
global_step = 0
|
144 |
for epoch in range(args.num_epochs):
|
145 |
-
model.train()
|
146 |
progress_bar = tqdm(
|
147 |
total=len(train_dataloader), disable=not accelerator.is_local_main_process
|
148 |
)
|
149 |
progress_bar.set_description(f"Epoch {epoch}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
for step, batch in enumerate(train_dataloader):
|
151 |
clean_images = batch["input"]
|
152 |
# Sample noise that we'll add to the images
|
@@ -271,12 +283,12 @@ if __name__ == "__main__":
|
|
271 |
parser.add_argument("--adam_beta2", type=float, default=0.999)
|
272 |
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
|
273 |
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
|
274 |
-
parser.add_argument("--use_ema",
|
275 |
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
|
276 |
parser.add_argument("--ema_power", type=float, default=3 / 4)
|
277 |
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
|
278 |
-
parser.add_argument("--push_to_hub",
|
279 |
-
parser.add_argument("--use_auth_token",
|
280 |
parser.add_argument("--hub_token", type=str, default=None)
|
281 |
parser.add_argument("--hub_model_id", type=str, default=None)
|
282 |
parser.add_argument("--hub_private_repo", type=bool, default=False)
|
@@ -293,6 +305,8 @@ if __name__ == "__main__":
|
|
293 |
),
|
294 |
)
|
295 |
parser.add_argument("--hop_length", type=int, default=512)
|
|
|
|
|
296 |
|
297 |
args = parser.parse_args()
|
298 |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
|
20 |
Compose,
|
21 |
InterpolationMode,
|
22 |
Normalize,
|
|
|
23 |
Resize,
|
24 |
ToTensor,
|
25 |
)
|
|
|
39 |
logging_dir=logging_dir,
|
40 |
)
|
41 |
|
42 |
+
if args.from_pretrained is not None:
|
43 |
+
model = UNet2DModel.from_pretrained(args.from_pretrained)
|
44 |
+
else:
|
45 |
+
model = UNet2DModel(
|
46 |
+
sample_size=args.resolution,
|
47 |
+
in_channels=1,
|
48 |
+
out_channels=1,
|
49 |
+
layers_per_block=2,
|
50 |
+
block_out_channels=(128, 128, 256, 256, 512, 512),
|
51 |
+
down_block_types=(
|
52 |
+
"DownBlock2D",
|
53 |
+
"DownBlock2D",
|
54 |
+
"DownBlock2D",
|
55 |
+
"DownBlock2D",
|
56 |
+
"AttnDownBlock2D",
|
57 |
+
"DownBlock2D",
|
58 |
+
),
|
59 |
+
up_block_types=(
|
60 |
+
"UpBlock2D",
|
61 |
+
"AttnUpBlock2D",
|
62 |
+
"UpBlock2D",
|
63 |
+
"UpBlock2D",
|
64 |
+
"UpBlock2D",
|
65 |
+
"UpBlock2D",
|
66 |
+
),
|
67 |
+
)
|
68 |
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, tensor_format="pt")
|
69 |
optimizer = torch.optim.AdamW(
|
70 |
model.parameters(),
|
|
|
78 |
[
|
79 |
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
|
80 |
CenterCrop(args.resolution),
|
|
|
81 |
ToTensor(),
|
82 |
Normalize([0.5], [0.5]),
|
83 |
]
|
|
|
143 |
|
144 |
global_step = 0
|
145 |
for epoch in range(args.num_epochs):
|
|
|
146 |
progress_bar = tqdm(
|
147 |
total=len(train_dataloader), disable=not accelerator.is_local_main_process
|
148 |
)
|
149 |
progress_bar.set_description(f"Epoch {epoch}")
|
150 |
+
|
151 |
+
if epoch < args.start_epoch:
|
152 |
+
for step in range(len(train_dataloader)):
|
153 |
+
optimizer.step()
|
154 |
+
lr_scheduler.step()
|
155 |
+
progress_bar.update(1)
|
156 |
+
global_step += 1
|
157 |
+
if epoch == args.start_epoch - 1 and args.use_ema:
|
158 |
+
ema_model.optimization_step = global_step
|
159 |
+
continue
|
160 |
+
|
161 |
+
model.train()
|
162 |
for step, batch in enumerate(train_dataloader):
|
163 |
clean_images = batch["input"]
|
164 |
# Sample noise that we'll add to the images
|
|
|
283 |
parser.add_argument("--adam_beta2", type=float, default=0.999)
|
284 |
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
|
285 |
parser.add_argument("--adam_epsilon", type=float, default=1e-08)
|
286 |
+
parser.add_argument("--use_ema", type=bool, default=True)
|
287 |
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
|
288 |
parser.add_argument("--ema_power", type=float, default=3 / 4)
|
289 |
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
|
290 |
+
parser.add_argument("--push_to_hub", type=bool, default=False)
|
291 |
+
parser.add_argument("--use_auth_token", type=bool, default=False)
|
292 |
parser.add_argument("--hub_token", type=str, default=None)
|
293 |
parser.add_argument("--hub_model_id", type=str, default=None)
|
294 |
parser.add_argument("--hub_private_repo", type=bool, default=False)
|
|
|
305 |
),
|
306 |
)
|
307 |
parser.add_argument("--hop_length", type=int, default=512)
|
308 |
+
parser.add_argument("--from_pretrained", type=str, default=None)
|
309 |
+
parser.add_argument("--start_epoch", type=int, default=0)
|
310 |
|
311 |
args = parser.parse_args()
|
312 |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|