File size: 6,538 Bytes
a895164
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff0eb9
 
a895164
2ff0eb9
a895164
2ff0eb9
 
5ddd792
2ff0eb9
 
 
 
 
 
5ddd792
a895164
25d0cb0
2ff0eb9
5ddd792
 
fa0c3bc
5ddd792
fa0c3bc
5ddd792
 
 
fa0c3bc
5ddd792
 
 
fa0c3bc
5ddd792
 
 
 
 
 
 
25d0cb0
 
 
5ddd792
2ff0eb9
25d0cb0
 
 
 
 
 
 
 
 
 
 
 
a895164
2ff0eb9
a895164
5ddd792
 
 
2ff0eb9
 
 
5ddd792
 
a895164
5ddd792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a895164
 
 
25d0cb0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# import os
# import sys
# import openai
# from langchain.chains import ConversationalRetrievalChain, RetrievalQA
# from langchain.chat_models import ChatOpenAI
# from langchain.document_loaders import DirectoryLoader, TextLoader
# from langchain.embeddings import OpenAIEmbeddings
# from langchain.indexes import VectorstoreIndexCreator
# from langchain.indexes.vectorstore import VectorStoreIndexWrapper
# from langchain.llms import OpenAI
# from langchain.text_splitter import CharacterTextSplitter

# __import__('pysqlite3')
# import sys
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

# from langchain.vectorstores import Chroma
# import gradio as gr

# os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")

# docs = []

# for f in os.listdir("multiple_docs"):
#     if f.endswith(".pdf"):
#         pdf_path = "./multiple_docs/" + f
#         loader = PyPDFLoader(pdf_path)
#         docs.extend(loader.load())
#     elif f.endswith('.docx') or f.endswith('.doc'):
#         doc_path = "./multiple_docs/" + f
#         loader = Docx2txtLoader(doc_path)
#         docs.extend(loader.load())
#     elif f.endswith('.txt'):
#         text_path = "./multiple_docs/" + f
#         loader = TextLoader(text_path)
#         docs.extend(loader.load())

# splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
# docs = splitter.split_documents(docs)

# # Convert the document chunks to embedding and save them to the vector store
# vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./data")
# vectorstore.persist()

# chain = ConversationalRetrievalChain.from_llm(
#     ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo'),
#     retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
#     return_source_documents=True,
#     verbose=False
# )

# chat_history = []

# with gr.Blocks() as demo:
#     chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
#     msg = gr.Textbox()
#     clear = gr.Button("Clear")
#     chat_history = []

#     def user(query, chat_history):
#         # print("User query:", query)
#         # print("Chat history:", chat_history)

#         # Convert chat history to list of tuples
#         chat_history_tuples = []
#         for message in chat_history:
#             chat_history_tuples.append((message[0], message[1]))

#         # Get result from QA chain
#         result = chain({"question": query, "chat_history": chat_history_tuples})

#         # Append user message and response to chat history
#         chat_history.append((query, result["answer"]))
#         # print("Updated chat history:", chat_history)

#         return gr.update(value=""), chat_history

#     msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
#     clear.click(lambda: None, None, chatbot, queue=False)

# demo.launch(debug=True)

import os
import sys
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import DirectoryLoader, TextLoader
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.indexes import VectorstoreIndexCreator
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
from langchain.text_splitter import CharacterTextSplitter

__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')

from langchain.vectorstores import Chroma
import gradio as gr
from transformers import pipeline
from sentence_transformers import SentenceTransformer

docs = []

for f in os.listdir("multiple_docs"):
    if f.endswith(".pdf"):
        pdf_path = "./multiple_docs/" + f
        loader = PyPDFLoader(pdf_path)
        docs.extend(loader.load())
    elif f.endswith('.docx') or f.endswith('.doc'):
        doc_path = "./multiple_docs/" + f
        loader = Docx2txtLoader(doc_path)
        docs.extend(loader.load())
    elif f.endswith('.txt'):
        text_path = "./multiple_docs/" + f
        loader = TextLoader(text_path)
        docs.extend(loader.load())

splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
docs = splitter.split_documents(docs)

# Convert the document chunks to embedding and save them to the vector store
embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
embeddings = HuggingFaceEmbeddings(embedding_model=embedding_model)
vectorstore = Chroma.from_documents(docs, embedding=embeddings, persist_directory="./data")
vectorstore.persist()

# Load the Hugging Face model for text generation
generator = pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B")

class HuggingFaceLLMWrapper:
    def __init__(self, generator):
        self.generator = generator
    
    def __call__(self, prompt, max_length=512):
        result = self.generator(prompt, max_length=max_length, num_return_sequences=1)
        return result[0]['generated_text']

llm = HuggingFaceLLMWrapper(generator)

chain = ConversationalRetrievalChain.from_llm(
    llm,
    retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
    return_source_documents=True,
    verbose=False
)

chat_history = []

with gr.Blocks() as demo:
    chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")], avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
    msg = gr.Textbox()
    clear = gr.Button("Clear")
    chat_history = []

    def user(query, chat_history):
        # Convert chat history to list of tuples
        chat_history_tuples = []
        for message in chat_history:
            chat_history_tuples.append((message[0], message[1]))

        # Get result from QA chain
        result = chain({"question": query, "chat_history": chat_history_tuples})

        # Append user message and response to chat history
        chat_history.append((query, result["answer"]))

        return gr.update(value=""), chat_history

    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
    clear.click(lambda: None, None, chatbot, queue=False)

demo.launch(debug=True)