Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
-
import
|
4 |
-
from langchain.chains import ConversationalRetrievalChain, RetrievalQA
|
5 |
-
from langchain.chat_models import ChatOpenAI
|
6 |
from langchain.document_loaders import DirectoryLoader, TextLoader
|
7 |
-
from langchain.embeddings import
|
8 |
from langchain.indexes import VectorstoreIndexCreator
|
9 |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
10 |
-
from langchain.llms import
|
11 |
from langchain.text_splitter import CharacterTextSplitter
|
12 |
|
13 |
__import__('pysqlite3')
|
@@ -16,8 +96,7 @@ sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
|
16 |
|
17 |
from langchain.vectorstores import Chroma
|
18 |
import gradio as gr
|
19 |
-
|
20 |
-
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")
|
21 |
|
22 |
docs = []
|
23 |
|
@@ -39,11 +118,14 @@ splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
|
39 |
docs = splitter.split_documents(docs)
|
40 |
|
41 |
# Convert the document chunks to embedding and save them to the vector store
|
42 |
-
vectorstore = Chroma.from_documents(docs, embedding=
|
43 |
vectorstore.persist()
|
44 |
|
|
|
|
|
|
|
45 |
chain = ConversationalRetrievalChain.from_llm(
|
46 |
-
|
47 |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
48 |
return_source_documents=True,
|
49 |
verbose=False
|
@@ -52,15 +134,12 @@ chain = ConversationalRetrievalChain.from_llm(
|
|
52 |
chat_history = []
|
53 |
|
54 |
with gr.Blocks() as demo:
|
55 |
-
chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
|
56 |
msg = gr.Textbox()
|
57 |
clear = gr.Button("Clear")
|
58 |
chat_history = []
|
59 |
|
60 |
def user(query, chat_history):
|
61 |
-
# print("User query:", query)
|
62 |
-
# print("Chat history:", chat_history)
|
63 |
-
|
64 |
# Convert chat history to list of tuples
|
65 |
chat_history_tuples = []
|
66 |
for message in chat_history:
|
@@ -71,11 +150,12 @@ with gr.Blocks() as demo:
|
|
71 |
|
72 |
# Append user message and response to chat history
|
73 |
chat_history.append((query, result["answer"]))
|
74 |
-
# print("Updated chat history:", chat_history)
|
75 |
|
76 |
return gr.update(value=""), chat_history
|
77 |
|
78 |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
|
79 |
clear.click(lambda: None, None, chatbot, queue=False)
|
80 |
|
81 |
-
demo.launch(debug=True)
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# import sys
|
3 |
+
# import openai
|
4 |
+
# from langchain.chains import ConversationalRetrievalChain, RetrievalQA
|
5 |
+
# from langchain.chat_models import ChatOpenAI
|
6 |
+
# from langchain.document_loaders import DirectoryLoader, TextLoader
|
7 |
+
# from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
# from langchain.indexes import VectorstoreIndexCreator
|
9 |
+
# from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
10 |
+
# from langchain.llms import OpenAI
|
11 |
+
# from langchain.text_splitter import CharacterTextSplitter
|
12 |
+
|
13 |
+
# __import__('pysqlite3')
|
14 |
+
# import sys
|
15 |
+
# sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
|
16 |
+
|
17 |
+
# from langchain.vectorstores import Chroma
|
18 |
+
# import gradio as gr
|
19 |
+
|
20 |
+
# os.environ["OPENAI_API_KEY"] = os.getenv("OPENAPIKEY")
|
21 |
+
|
22 |
+
# docs = []
|
23 |
+
|
24 |
+
# for f in os.listdir("multiple_docs"):
|
25 |
+
# if f.endswith(".pdf"):
|
26 |
+
# pdf_path = "./multiple_docs/" + f
|
27 |
+
# loader = PyPDFLoader(pdf_path)
|
28 |
+
# docs.extend(loader.load())
|
29 |
+
# elif f.endswith('.docx') or f.endswith('.doc'):
|
30 |
+
# doc_path = "./multiple_docs/" + f
|
31 |
+
# loader = Docx2txtLoader(doc_path)
|
32 |
+
# docs.extend(loader.load())
|
33 |
+
# elif f.endswith('.txt'):
|
34 |
+
# text_path = "./multiple_docs/" + f
|
35 |
+
# loader = TextLoader(text_path)
|
36 |
+
# docs.extend(loader.load())
|
37 |
+
|
38 |
+
# splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
|
39 |
+
# docs = splitter.split_documents(docs)
|
40 |
+
|
41 |
+
# # Convert the document chunks to embedding and save them to the vector store
|
42 |
+
# vectorstore = Chroma.from_documents(docs, embedding=OpenAIEmbeddings(), persist_directory="./data")
|
43 |
+
# vectorstore.persist()
|
44 |
+
|
45 |
+
# chain = ConversationalRetrievalChain.from_llm(
|
46 |
+
# ChatOpenAI(temperature=0.7, model_name='gpt-3.5-turbo'),
|
47 |
+
# retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
48 |
+
# return_source_documents=True,
|
49 |
+
# verbose=False
|
50 |
+
# )
|
51 |
+
|
52 |
+
# chat_history = []
|
53 |
+
|
54 |
+
# with gr.Blocks() as demo:
|
55 |
+
# chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")],avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
|
56 |
+
# msg = gr.Textbox()
|
57 |
+
# clear = gr.Button("Clear")
|
58 |
+
# chat_history = []
|
59 |
+
|
60 |
+
# def user(query, chat_history):
|
61 |
+
# # print("User query:", query)
|
62 |
+
# # print("Chat history:", chat_history)
|
63 |
+
|
64 |
+
# # Convert chat history to list of tuples
|
65 |
+
# chat_history_tuples = []
|
66 |
+
# for message in chat_history:
|
67 |
+
# chat_history_tuples.append((message[0], message[1]))
|
68 |
+
|
69 |
+
# # Get result from QA chain
|
70 |
+
# result = chain({"question": query, "chat_history": chat_history_tuples})
|
71 |
+
|
72 |
+
# # Append user message and response to chat history
|
73 |
+
# chat_history.append((query, result["answer"]))
|
74 |
+
# # print("Updated chat history:", chat_history)
|
75 |
+
|
76 |
+
# return gr.update(value=""), chat_history
|
77 |
+
|
78 |
+
# msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
|
79 |
+
# clear.click(lambda: None, None, chatbot, queue=False)
|
80 |
+
|
81 |
+
# demo.launch(debug=True)
|
82 |
+
|
83 |
import os
|
84 |
import sys
|
85 |
+
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
|
86 |
from langchain.document_loaders import DirectoryLoader, TextLoader
|
87 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
88 |
from langchain.indexes import VectorstoreIndexCreator
|
89 |
from langchain.indexes.vectorstore import VectorStoreIndexWrapper
|
90 |
+
from langchain.llms import HuggingFaceLLM
|
91 |
from langchain.text_splitter import CharacterTextSplitter
|
92 |
|
93 |
__import__('pysqlite3')
|
|
|
96 |
|
97 |
from langchain.vectorstores import Chroma
|
98 |
import gradio as gr
|
99 |
+
from transformers import pipeline
|
|
|
100 |
|
101 |
docs = []
|
102 |
|
|
|
118 |
docs = splitter.split_documents(docs)
|
119 |
|
120 |
# Convert the document chunks to embedding and save them to the vector store
|
121 |
+
vectorstore = Chroma.from_documents(docs, embedding=HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2"), persist_directory="./data")
|
122 |
vectorstore.persist()
|
123 |
|
124 |
+
# Load the Hugging Face model
|
125 |
+
llm = HuggingFaceLLM(pipeline("text-generation", model="EleutherAI/gpt-neo-2.7B"))
|
126 |
+
|
127 |
chain = ConversationalRetrievalChain.from_llm(
|
128 |
+
llm,
|
129 |
retriever=vectorstore.as_retriever(search_kwargs={'k': 6}),
|
130 |
return_source_documents=True,
|
131 |
verbose=False
|
|
|
134 |
chat_history = []
|
135 |
|
136 |
with gr.Blocks() as demo:
|
137 |
+
chatbot = gr.Chatbot([("", "Hello, I'm Thierry Decae's chatbot, you can ask me any recruitment related questions such as my previous or most recent experience, where I'm eligible to work, when I can start work, what NLP skills I have, and much more! you can chat with me directly in multiple languages")], avatar_images=["./multiple_docs/Guest.jpg","./multiple_docs/Thierry Picture.jpg"])
|
138 |
msg = gr.Textbox()
|
139 |
clear = gr.Button("Clear")
|
140 |
chat_history = []
|
141 |
|
142 |
def user(query, chat_history):
|
|
|
|
|
|
|
143 |
# Convert chat history to list of tuples
|
144 |
chat_history_tuples = []
|
145 |
for message in chat_history:
|
|
|
150 |
|
151 |
# Append user message and response to chat history
|
152 |
chat_history.append((query, result["answer"]))
|
|
|
153 |
|
154 |
return gr.update(value=""), chat_history
|
155 |
|
156 |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False)
|
157 |
clear.click(lambda: None, None, chatbot, queue=False)
|
158 |
|
159 |
+
demo.launch(debug=True)
|
160 |
+
|
161 |
+
|