File size: 47,799 Bytes
b0ffe80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e535d65
b0ffe80
 
 
 
 
 
 
 
 
adacbb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d9d6be
 
 
 
 
 
 
 
 
 
adacbb6
9d9d6be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0ffe80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dbf557
b0ffe80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
adacbb6
b0ffe80
 
 
 
9d9d6be
b0ffe80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f831aca
81ee216
 
 
 
 
 
 
9d9d6be
430ca10
81ee216
2f41c3b
958c53e
81ee216
2736f8d
724a157
81ee216
 
724a157
81ee216
202098f
2f41c3b
fa22f1c
81ee216
 
fa22f1c
81ee216
 
 
 
 
 
 
 
 
 
9d9d6be
 
 
 
fa22f1c
81ee216
 
202098f
81ee216
202098f
81ee216
202098f
9d9d6be
 
81ee216
 
202098f
5d98e50
81ee216
49c6b22
81ee216
 
 
 
5cd098a
5d98e50
9d9d6be
81ee216
170e700
81ee216
49c6b22
81ee216
 
 
 
5cd098a
81ee216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
430ca10
81ee216
 
 
 
 
 
 
 
 
 
 
 
430ca10
81ee216
 
 
 
 
 
 
 
 
 
 
 
9d9d6be
 
 
d2d417a
9d9d6be
 
 
 
 
 
d2d417a
 
81ee216
 
 
 
 
 
 
 
958c53e
81ee216
 
 
 
 
 
 
87f7811
81ee216
 
 
 
 
 
 
0a26b0c
81ee216
 
016458a
81ee216
 
 
016458a
81ee216
 
 
 
 
0a26b0c
81ee216
 
 
 
 
17da6b9
81ee216
 
 
 
 
 
 
 
 
d1fccc4
873879c
81ee216
 
d79684d
81ee216
d79684d
d6efa0a
d79684d
 
 
 
016458a
e9708a7
d79684d
81ee216
 
 
 
5d98e50
81ee216
 
5cd098a
81ee216
 
 
 
 
d79684d
 
 
d6efa0a
 
d79684d
47e3877
d79684d
 
 
45058ac
d79684d
81ee216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf21355
81ee216
 
 
 
 
 
c62c327
f831aca
81ee216
 
f831aca
 
305e048
f831aca
 
0235d82
f831aca
 
e535d65
 
f831aca
 
 
 
2f41c3b
81ee216
bf21355
49c6b22
81ee216
bf21355
 
81ee216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd098a
 
81ee216
 
1b2a135
 
 
 
 
 
 
 
 
03d8d3a
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd098a
99d9c88
 
5cd098a
99d9c88
03d8d3a
99d9c88
 
 
4ee08d3
 
99d9c88
5cd098a
 
 
99d9c88
 
5cd098a
34aa778
4ee08d3
5cd098a
1b2a135
 
5cd098a
8c7ecf5
4ee08d3
1b2a135
 
 
5cd098a
 
 
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cd098a
1b2a135
 
 
5cd098a
 
1b2a135
 
 
 
 
5cd098a
 
1b2a135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
440630e
1b2a135
 
440630e
1b2a135
 
 
 
9c5a793
f0b3ee7
a414e9c
 
33299b0
a414e9c
 
1b2a135
 
 
 
 
 
 
 
 
440630e
5cd098a
 
37deecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b2a135
37deecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9889802
37deecf
 
 
 
 
 
 
 
 
 
 
f0b3ee7
37deecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7656ca
37deecf
 
 
 
 
 
b7656ca
37deecf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
import os
import gradio as gr
import requests
import inspect
import time
import pandas as pd
from smolagents import DuckDuckGoSearchTool
import threading
from typing import Dict, List, Optional, Tuple, Union
import json
from huggingface_hub import InferenceClient
import base64
from PIL import Image
import io
import tempfile
import urllib.parse
from pathlib import Path
import re
from bs4 import BeautifulSoup
import mimetypes
import tempfile

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

# --- Global Cache for Answers ---
cached_answers = {}
cached_questions = []
processing_status = {"is_processing": False, "progress": 0, "total": 0}


# simple search instrad of duck:
class SimpleSearchTool:
    """
    Simple search tool that scrapes DuckDuckGo HTML results.
    Drop-in replacement for DuckDuckGoSearchTool.
    """
    
    def __init__(self):
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
        })
    
    def run(self, query: str) -> str:
        """Search and return formatted results."""
        try:
            # Encode query for URL
            encoded_query = urllib.parse.quote_plus(query)
            url = f"https://html.duckduckgo.com/html/?q={encoded_query}"
            
            response = self.session.get(url, timeout=10)
            response.raise_for_status()
            
            soup = BeautifulSoup(response.content, 'html.parser')
            results = []
            
            # Find search result containers
            result_containers = soup.find_all('div', class_='result__body')
            
            for i, container in enumerate(result_containers[:5], 1):
                try:
                    # Extract title and URL
                    title_elem = container.find('a', class_='result__a')
                    if not title_elem:
                        continue
                    
                    title = title_elem.get_text().strip()
                    url = title_elem.get('href', '')
                    
                    # Extract snippet
                    snippet_elem = container.find('a', class_='result__snippet')
                    snippet = snippet_elem.get_text().strip() if snippet_elem else ''
                    
                    if title and url:
                        result = f"{i}. {title}\n   URL: {url}\n"
                        if snippet:
                            result += f"   Snippet: {snippet}\n"
                        results.append(result)
                        
                except Exception:
                    continue
            
            return "\n".join(results) if results else "No search results found."
            
        except Exception as e:
            return f"Search failed: {str(e)}"
# --- Excel Processing Tool ---
class ExcelAnalysisTool:
    def __init__(self):
        pass
    
    def analyze_excel(self, file_path: str) -> str:
        """Extract and format Excel content for LLM context."""
        try:
            # Read all sheets
            excel_data = pd.read_excel(file_path, sheet_name=None, nrows=100)
            
            result = []
            result.append(f"EXCEL FILE ANALYSIS: {file_path}")
            
            for sheet_name, df in excel_data.items():
                result.append(f"\nSHEET: {sheet_name}")
                result.append(f"Size: {df.shape[0]} rows × {df.shape[1]} columns")
                result.append(f"Columns: {list(df.columns)}")
                
                # Show first few rows
                if not df.empty:
                    result.append("Sample data:")
                    result.append(df.head(3).to_string(index=False))
            
            return "\n".join(result)
            
        except Exception as e:
            return f"Excel analysis failed: {e}"   
# --- Web Content Fetcher ---
class WebContentFetcher:
    def __init__(self, debug: bool = True):
        self.debug = debug
        self.session = requests.Session()
        self.session.headers.update({
            'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'
        })
        
    def extract_urls_from_text(self, text: str) -> List[str]:
        """Extract URLs from text using regex."""
        url_pattern = r'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+'
        urls = re.findall(url_pattern, text)
        return list(set(urls))  # Remove duplicates
    
    def fetch_url_content(self, url: str) -> Dict[str, str]:
        """
        Fetch content from a URL and extract text, handling different content types.
        Returns a dictionary with 'content', 'title', 'content_type', and 'error' keys.
        """
        try:
            # Clean the URL
            url = url.strip()
            if not url.startswith(('http://', 'https://')):
                url = 'https://' + url
            
            if self.debug:
                print(f"Fetching URL: {url}")
            
            response = self.session.get(url, timeout=30, allow_redirects=True)
            response.raise_for_status()
            
            content_type = response.headers.get('content-type', '').lower()
            
            result = {
                'url': url,
                'content_type': content_type,
                'title': '',
                'content': '',
                'error': None
            }
            
            # Handle different content types
            if 'text/html' in content_type:
                # Parse HTML content
                soup = BeautifulSoup(response.content, 'html.parser')
                
                # Extract title
                title_tag = soup.find('title')
                result['title'] = title_tag.get_text().strip() if title_tag else 'No title'
                
                # Remove script and style elements
                for script in soup(["script", "style"]):
                    script.decompose()
                
                # Extract text content
                text_content = soup.get_text()
                
                # Clean up text
                lines = (line.strip() for line in text_content.splitlines())
                chunks = (phrase.strip() for line in lines for phrase in line.split("  "))
                text_content = ' '.join(chunk for chunk in chunks if chunk)
                
                # Limit content length
                if len(text_content) > 8000:
                    text_content = text_content[:8000] + "... (truncated)"
                
                result['content'] = text_content
                
            elif 'text/plain' in content_type:
                # Handle plain text
                text_content = response.text
                if len(text_content) > 8000:
                    text_content = text_content[:8000] + "... (truncated)"
                result['content'] = text_content
                result['title'] = f"Text document from {url}"
                
            elif 'application/json' in content_type:
                # Handle JSON content
                try:
                    json_data = response.json()
                    result['content'] = json.dumps(json_data, indent=2)[:8000]
                    result['title'] = f"JSON document from {url}"
                except:
                    result['content'] = response.text[:8000]
                    result['title'] = f"JSON document from {url}"
                    
            elif any(x in content_type for x in ['application/pdf', 'application/msword', 'application/vnd.openxmlformats']):
                # Handle document files
                result['content'] = f"Document file detected ({content_type}). Content extraction for this file type is not implemented."
                result['title'] = f"Document from {url}"
                
            else:
                # Handle other content types
                if response.text:
                    content = response.text[:8000]
                    result['content'] = content
                    result['title'] = f"Content from {url}"
                else:
                    result['content'] = f"Non-text content detected ({content_type})"
                    result['title'] = f"File from {url}"
            
            if self.debug:
                print(f"Successfully fetched content from {url}: {len(result['content'])} characters")
            
            return result
            
        except requests.exceptions.RequestException as e:
            error_msg = f"Failed to fetch {url}: {str(e)}"
            if self.debug:
                print(error_msg)
            return {
                'url': url,
                'content_type': 'error',
                'title': f"Error fetching {url}",
                'content': '',
                'error': error_msg
            }
        except Exception as e:
            error_msg = f"Unexpected error fetching {url}: {str(e)}"
            if self.debug:
                print(error_msg)
            return {
                'url': url,
                'content_type': 'error',
                'title': f"Error fetching {url}",
                'content': '',
                'error': error_msg
            }
    
    def fetch_multiple_urls(self, urls: List[str]) -> List[Dict[str, str]]:
        """Fetch content from multiple URLs."""
        results = []
        for url in urls[:5]:  # Limit to 5 URLs to avoid excessive processing
            result = self.fetch_url_content(url)
            results.append(result)
            time.sleep(1)  # Be respectful to servers
        return results

# --- File Processing Utility ---
def save_attachment_to_file(attachment_data: Union[str, bytes, dict], temp_dir: str, file_name: str = None) -> Optional[str]:
    """
    Save attachment data to a temporary file.
    Returns the local file path if successful, None otherwise.
    """
    try:
        # Determine file name and extension
        if not file_name:
            file_name = f"attachment_{int(time.time())}"
        
        # Handle different data types
        if isinstance(attachment_data, dict):
            # Handle dict with file data
            if 'data' in attachment_data:
                file_data = attachment_data['data']
                file_type = attachment_data.get('type', '').lower()
                original_name = attachment_data.get('name', file_name)
            elif 'content' in attachment_data:
                file_data = attachment_data['content']
                file_type = attachment_data.get('mime_type', '').lower()
                original_name = attachment_data.get('filename', file_name)
            else:
                # Try to use the dict as file data directly
                file_data = str(attachment_data)
                file_type = ''
                original_name = file_name
                
            # Use original name if available
            if original_name and original_name != file_name:
                file_name = original_name
                
        elif isinstance(attachment_data, str):
            # Could be base64 encoded data or plain text
            file_data = attachment_data
            file_type = ''
            
        elif isinstance(attachment_data, bytes):
            # Binary data
            file_data = attachment_data
            file_type = ''
            
        else:
            print(f"Unknown attachment data type: {type(attachment_data)}")
            return None
        
        # Ensure file has an extension
        if '.' not in file_name:
            # Try to determine extension from type
            if 'image' in file_type:
                if 'jpeg' in file_type or 'jpg' in file_type:
                    file_name += '.jpg'
                elif 'png' in file_type:
                    file_name += '.png'
                else:
                    file_name += '.img'
            elif 'audio' in file_type:
                if 'mp3' in file_type:
                    file_name += '.mp3'
                elif 'wav' in file_type:
                    file_name += '.wav'
                else:
                    file_name += '.audio'
            elif 'python' in file_type or 'text' in file_type:
                file_name += '.py'
            else:
                file_name += '.file'
        
        file_path = os.path.join(temp_dir, file_name)
        
        # Save the file
        if isinstance(file_data, str):
            # Try to decode if it's base64
            try:
                # Check if it looks like base64
                if len(file_data) > 100 and '=' in file_data[-5:]:
                    decoded_data = base64.b64decode(file_data)
                    with open(file_path, 'wb') as f:
                        f.write(decoded_data)
                else:
                    # Plain text
                    with open(file_path, 'w', encoding='utf-8') as f:
                        f.write(file_data)
            except:
                # If base64 decode fails, save as text
                with open(file_path, 'w', encoding='utf-8') as f:
                    f.write(file_data)
        else:
            # Binary data
            with open(file_path, 'wb') as f:
                f.write(file_data)
        
        print(f"Saved attachment: {file_path}")
        return file_path
        
    except Exception as e:
        print(f"Failed to save attachment: {e}")
        return None

# --- Code Processing Tool ---
class CodeAnalysisTool:
    def __init__(self, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
        self.client = InferenceClient(model=model_name, provider="sambanova")
        
    def analyze_code(self, code_path: str) -> str:
        """
        Analyze Python code and return insights.
        """
        try:
            with open(code_path, 'r', encoding='utf-8') as f:
                code_content = f.read()
            
            # Limit code length for analysis
            if len(code_content) > 5000:
                code_content = code_content[:5000] + "\n... (truncated)"
            
            analysis_prompt = f"""Just provide the code content withiut any changes as reply.
Code:
```python
{code_content}
```

Provide a brief, focused analysis:"""

            messages = [{"role": "user", "content": analysis_prompt}]
            response = self.client.chat_completion(
                messages=messages,
                max_tokens=500,
                temperature=0.3
            )
            
            return response.choices[0].message.content.strip()
            
        except Exception as e:
            return f"Code analysis failed: {e}"

# --- Image Processing Tool ---
class ImageAnalysisTool:
    def __init__(self, model_name: str = "microsoft/Florence-2-large"):
        self.client = InferenceClient(model=model_name)
        
    def analyze_image(self, image_path: str, prompt: str = "Describe this image in detail") -> str:
        """
        Analyze an image and return a description.
        """
        try:
            # Open and process the image
            with open(image_path, "rb") as f:
                image_bytes = f.read()
            
            # Use the vision model to analyze the image
            response = self.client.image_to_text(
                image=image_bytes,
                model="microsoft/Florence-2-large"
            )
            
            return response.get("generated_text", "Could not analyze image")
            
        except Exception as e:
            try:
                # Fallback: use a different vision model
                response = self.client.image_to_text(
                    image=image_bytes,
                    model="Salesforce/blip-image-captioning-large"
                )
                return response.get("generated_text", f"Image analysis error: {e}")
            except:
                return f"Image analysis failed: {e}"

    def extract_text_from_image(self, image_path: str) -> str:
        """
        Extract text from an image using OCR.
        """
        try:
            with open(image_path, "rb") as f:
                image_bytes = f.read()
            
            # Use an OCR model
            response = self.client.image_to_text(
                image=image_bytes,
                model="microsoft/trocr-base-printed"
            )
            
            return response.get("generated_text", "No text found in image")
            
        except Exception as e:
            return f"OCR failed: {e}"

# --- Audio Processing Tool ---
class AudioTranscriptionTool:
    def __init__(self, model_name: str = "openai/whisper-large-v3"):
        self.client = InferenceClient(model=model_name)
        
    def transcribe_audio(self, audio_path: str) -> str:
        """
        Transcribe audio file to text.
        """
        try:
            with open(audio_path, "rb") as f:
                audio_bytes = f.read()
            
            # Use Whisper for transcription
            response = self.client.automatic_speech_recognition(
                audio=audio_bytes
            )
            
            return response.get("text", "Could not transcribe audio")
            
        except Exception as e:
            try:
                # Fallback to a different ASR model
                response = self.client.automatic_speech_recognition(
                    audio=audio_bytes,
                    model="facebook/wav2vec2-large-960h-lv60-self"
                )
                return response.get("text", f"Audio transcription error: {e}")
            except:
                return f"Audio transcription failed: {e}"

# --- Enhanced Intelligent Agent with Direct Attachment Processing ---
class IntelligentAgent:
    def __init__(self, debug: bool = True, model_name: str = "meta-llama/Llama-3.1-8B-Instruct"):
        self.search_tool = SimpleSearchTool()
        self.client = InferenceClient(model=model_name, provider="sambanova")
        self.image_tool = ImageAnalysisTool()
        self.audio_tool = AudioTranscriptionTool()
        self.code_tool = CodeAnalysisTool(model_name)
        self.excel_tool = ExcelAnalysisTool()
        self.web_fetcher = WebContentFetcher(debug)
        self.debug = debug
        if self.debug:
            print(f"IntelligentAgent initialized with model: {model_name}")

    def _chat_completion(self, prompt: str, max_tokens: int = 500, temperature: float = 0.3) -> str:
        """
        Use chat completion instead of text generation to avoid provider compatibility issues.
        """
        try:
            messages = [{"role": "user", "content": prompt}]
            
            # Try chat completion first
            try:
                response = self.client.chat_completion(
                    messages=messages,
                    max_tokens=max_tokens,
                    temperature=temperature
                )
                return response.choices[0].message.content.strip()
            except Exception as chat_error:
                if self.debug:
                    print(f"Chat completion failed: {chat_error}, trying text generation...")
                
                # Fallback to text generation
                response = self.client.conversational(
                    prompt,
                    max_new_tokens=max_tokens,
                    temperature=temperature,
                    do_sample=temperature > 0
                )
                return response.strip()
                
        except Exception as e:
            if self.debug:
                print(f"Both chat completion and text generation failed: {e}")
            raise e

    def _extract_and_process_urls(self, question_text: str) -> str:
        """
        Extract URLs from question text and fetch their content.
        Returns formatted content from all URLs.
        """
        urls = self.web_fetcher.extract_urls_from_text(question_text)
        
        if not urls:
            return ""
        
        if self.debug:
            print(f"...Found {len(urls)} URLs in question: {urls}")
        
        url_contents = self.web_fetcher.fetch_multiple_urls(urls)
        
        if not url_contents:
            return ""
        
        # Format the content
        formatted_content = []
        for content_data in url_contents:
            if content_data['error']:
                formatted_content.append(f"URL: {content_data['url']}\nError: {content_data['error']}")
            else:
                formatted_content.append(
                    f"URL: {content_data['url']}\n"
                    f"Title: {content_data['title']}\n"
                    f"Content Type: {content_data['content_type']}\n"
                    f"Content: {content_data['content']}"
                )
        
        return "\n\n" + "="*50 + "\n".join(formatted_content) + "\n" + "="*50

    def _detect_and_process_direct_attachments(self, file_name: str, local_path: str) -> Tuple[List[str], List[str], List[str]]:
        """
        Detect and process a single attachment directly attached to a question (not as a URL).
        Returns (image_files, audio_files, code_files)
        """
        image_files = []
        audio_files = []
        code_files = []
        excel_files = []

        if not file_name:
            return image_files, audio_files, excel_files, code_files

        try:
            # Construct the file path (assuming file is in the same directory)
            #file_path = os.path.join(local_path, file_name)
            
            # Check if file exists
            if not os.path.exists(local_path):
                if self.debug:
                    print(f"File not found: {local_path}")
                return image_files, audio_files, excel_files, code_files

            # Get file extension
            file_ext = Path(file_name).suffix.lower()

            # Determine category
            is_image = ( 
                file_ext in ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp', '.tiff']
            )
            is_audio = ( 
                file_ext in ['.mp3', '.wav', '.m4a', '.ogg', '.flac', '.aac']
            )
            is_code = (
                file_ext in ['.py', '.txt', '.js', '.html', '.css', '.json', '.xml', '.md', '.c', '.cpp', '.java']
            )
            is_excel = (
                file_ext in ['.xlsx', '.xls']
            )


            # Categorize the file
            if is_image:
                image_files.append(local_path)
            elif is_audio:
                audio_files.append(local_path)
            elif is_code:
                code_files.append(local_path)
            elif is_excel:
                excel_files.append(local_path)
            else:
                # Default to code/text for unknown types
                code_files.append(local_path)

            if self.debug:
                print(f"Processed file: {file_name} -> {'image' if is_image else 'audio' if is_audio else 'excel' if is_excel else 'code'}")

        except Exception as e:
            if self.debug:
                print(f"Error processing attachment {file_name}: {e}")

        if self.debug:
            print(f"Processed attachment: {len(image_files)} images, {len(audio_files)} audio, {len(code_files)} code files, {len(excel_files)} excel files")
                
        return image_files, audio_files, excel_files, code_files

    def _process_attachments(self, image_files: List[str], audio_files: List[str], excel_files: List[str], code_files: List[str]) -> str:
        """
        Process different types of attachments and return consolidated context.
        """
        attachment_context = ""
        
        # Process images
        for image_file in image_files:
            if self.debug:
                print(f"Processing image: {image_file}")
            try:
                image_description = self.image_tool.analyze_image(image_file)
                ocr_text = self.image_tool.extract_text_from_image(image_file)
                
                attachment_context += f"\n\nIMAGE ANALYSIS ({image_file}):\n"
                attachment_context += f"Description: {image_description}\n"
                if ocr_text and "No text found" not in ocr_text and "OCR failed" not in ocr_text:
                    attachment_context += f"Text extracted: {ocr_text}\n"
                    
            except Exception as e:
                if self.debug:
                    print(f"Error processing image {image_file}: {e}")
                attachment_context += f"\n\nIMAGE PROCESSING ERROR ({image_file}): {e}\n"
        
        # Process audio files
        for audio_file in audio_files:
            if self.debug:
                print(f"Processing audio: {audio_file}")
            try:
                transcription = self.audio_tool.transcribe_audio(audio_file)
                attachment_context += f"\n\nAUDIO TRANSCRIPTION ({audio_file}):\n{transcription}\n"
                
            except Exception as e:
                if self.debug:
                    print(f"Error processing audio {audio_file}: {e}")
                attachment_context += f"\n\nAUDIO PROCESSING ERROR ({audio_file}): {e}\n"
        
        # Process code/text files
        for code_file in code_files:
            if self.debug:
                print(f"Processing code/text: {code_file}")
            try:
                code_analysis = self.code_tool.analyze_code(code_file)
                attachment_context += f"\n\nCODE ANALYSIS ({code_file}):\n{code_analysis}\n"
                
            except Exception as e:
                if self.debug:
                    print(f"Error processing code {code_file}: {e}")
                attachment_context += f"\n\nCODE PROCESSING ERROR ({code_file}): {e}\n"
        # Process excel files
        for excel_file in excel_files:
            if self.debug:
                print(f"Processing excel: {excel_file}")
            try:
                excel_analysis = self.excel_tool.analyze_excel(excel_file)
                attachment_context += f"\n\nEXCEL ANALYSIS ({excel_file}):\n{excel_analysis}\n"
                
            except Exception as e:
                if self.debug:
                    print(f"Error processing code {excel_file}: {e}")
                attachment_context += f"\n\nEXCEL PROCESSING ERROR ({excel_file}): {e}\n"
        return attachment_context

    def _should_search(self, question: str, attachment_context: str, url_context: str) -> bool:
        """
        Decide whether to use search based on the question and available context.
        """
        # If we have rich context from attachments or URLs, we might not need search
        has_rich_context = bool(attachment_context.strip() or url_context.strip())
        
        # Keywords that typically indicate search is needed
        search_keywords = [
            "latest", "recent", "current", "today", "now", "2024", "2025",
            "news", "update", "breaking", "trending", "happening",
            "who is", "what is", "where is", "when did", "how many",
            "price", "stock", "weather", "forecast"
        ]
        
        question_lower = question.lower()
        needs_search = any(keyword in question_lower for keyword in search_keywords)
        
        # Use LLM to make a more nuanced decision
        try:
            decision_prompt = f"""
Given this question and available context, should I search the web for additional information?

Question: {question}

Available context: {"Yes - context from attachments/URLs" if has_rich_context else "No additional context"}

Context preview: {(attachment_context + url_context)[:500]}...

Answer with just "YES" only if your general knowledge is insufficient to answer the question. Say "NO" if your knowledge is enough or if there is context available.
"""
            
            decision = self._chat_completion(decision_prompt, max_tokens=10, temperature=0.1)
            should_search = "YES" in decision.upper()
            
            if self.debug:
                print(f"Search decision: {should_search} (LLM said: {decision})")
            
            return should_search
            
        except Exception as e:
            if self.debug:
                print(f"Error in search decision: {e}, falling back to keyword-based decision")
            return needs_search and not has_rich_context

    def _answer_with_search(self, question: str, attachment_context: str, url_context: str) -> str:
        """
        Answer the question using search + LLM.
        """
        try:
            # Perform search
            #search_results = self.search_tool.forward(question)
            search_results = self.search_tool.run(question)
            
            # Combine all contexts
            full_context = f"""Question: {question} Search Results: {search_results} {attachment_context}{url_context}"""
            
            answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question. 
            The question might refer to external information or an attachment (e.g. video or image). Do not say that you cannot process those. Use context below. 
            Based on the context sections below, provide an answer to the question. 
            If the search results don't fully answer the question, you can supplement with your general knowledge. 
            Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. 
            If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. 
            If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwuse. 
            Do not include your motivation, reasoning or explanation. Provide only the answer 
           {full_context} """
            
            return self._chat_completion(answer_prompt, max_tokens=800, temperature=0.3)
            
        except Exception as e:
            if self.debug:
                print(f"Search-based answer failed: {e}")
            return self._answer_with_llm(question, attachment_context, url_context)

    def _answer_with_llm(self, question: str, attachment_context: str, url_context: str) -> str:
        """
        Answer the question using only the LLM and available context.
        """
        try:
            full_context = f"""Question: {question} {attachment_context} {url_context}"""
            
            answer_prompt = f"""\no_think You are a general AI assistant. I will ask you a question. 

            The question might refer to external information or an attachment (e.g. video or image). Do not say that you cannot process those. Use context below. 
            Based on the context sections below, provide an answer to the question. 
            If the context doesn't fully answer the question, you can supplement with your general knowledge. 
            Your ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. 
            If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. 
            If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
            Do not include your motivation, reasoning or explanation. Provide only the short answer (e.g. one word).
           {full_context} """
            
            return self._chat_completion(answer_prompt, max_tokens=800, temperature=0.3)
            
        except Exception as e:
            return f"I apologize, but I encountered an error while processing your question: {e}"

    def process_question_with_attachments(self, question_data: dict) -> str:
        """
        Process a question that may have attachments and URLs.
        """
        question_text = question_data.get('question', '')          
        if self.debug:
            print(f"Question data keys: {list(question_data.keys())}")
            print(f"\n1. Processing question with potential attachments and URLs: {question_text[:300]}...")

        try:
            # Detect and process URLs
            if self.debug:
                print(f"2. Detecting and processing URLs...")
            
            url_context = self._extract_and_process_urls(question_text)
            
            if self.debug and url_context:
                print(f"URL context found: {len(url_context)} characters")
        except Exception as e:
            if self.debug:
                print(f"Error extracting URLs: {e}")
            url_context = ""
            
        attachment_context = ""
        try:    
            # Detect and download attachments
            if self.debug:
                print(f"3. Searching for images, audio or code attachments...")
            
            attachment_name = question_data.get('file_name', '')
            task_id = question_data.get('task_id', '')
            
            if self.debug:
                print(f"Attachment name from question_data: '{attachment_name}'")
            
            if self.debug and attachment_name:
               print(f"Downloading attachment")
            
            if attachment_name:
                download_url = f"{DEFAULT_API_URL}/files/{task_id}"
                response = requests.get(download_url, timeout=30)
                response.raise_for_status()
                temp_dir = tempfile.mkdtemp()
                local_file_path = os.path.join(temp_dir, attachment_name)

                with open(local_file_path, 'wb') as f:
                    f.write(response.content)
            
                image_files, audio_files, excel_files, code_files = self._detect_and_process_direct_attachments(attachment_name, local_file_path)
            
                # Process attachments to get context
                attachment_context = self._process_attachments(image_files, audio_files, excel_files, code_files)
            
                if self.debug and attachment_context:
                   print(f"Attachment context: {attachment_context[:200]}...")

            # Decide whether to search
            if self._should_search(question_text, attachment_context, url_context):
                if self.debug:
                    print("5. Using search-based approach")
                answer = self._answer_with_search(question_text, attachment_context, url_context)
            else:
                if self.debug:
                    print("5. Using LLM-only approach")
                answer = self._answer_with_llm(question_text, attachment_context, url_context)
                if self.debug:
                    print(f"LLM answer: {answer}")

            # Note: We don't cleanup files here since they're not temporary files we created
            # They are actual files in the working directory

        except Exception as e:
            if self.debug:
                print(f"Error in attachment processing: {e}")
            answer = f"Sorry, I encountered an error: {e}"

        if self.debug:
            print(f"6. Agent returning answer: {answer[:100]}...")
        return answer

def fetch_questions() -> Tuple[str, Optional[pd.DataFrame]]:
    """
    Fetch questions from the API and cache them.
    """
    global cached_questions
    
    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    files_url = f"{api_url}/files"
    
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        
        if not questions_data:
            return "Fetched questions list is empty.", None
            
        cached_questions = questions_data
        
        # Create DataFrame for display
        display_data = []
        for item in questions_data:
            # Check for attachments
            has_file = False
            file_info = ""
            
            file_name = item.get("file_name", "")
            item_id = item.get("task_id")
            if file_name and file_name.strip():
                has_file = True
                file_info = file_name
                file_data = requests.get(f"{files_url}/{item_id}")      
                print(file_data)
    
            # Check if question contains URLs
            question_text = item.get("question", "")
            if 'http' in question_text:
                has_file = True
                file_info += "URLs in text, "
            
            if file_info:
                file_info = file_info.rstrip(", ")
            
            display_data.append({
                "Task ID": item.get("task_id", "Unknown"),
                "Question": question_text[:100] + "..." if len(question_text) > 100 else question_text,
                "Has Attachments": "Yes" if has_file else "No",
                "Attachment Info": file_info
            })
        
        df = pd.DataFrame(display_data)
        
        attachment_count = sum(1 for item in display_data if item["Has Attachments"] == "Yes")
        status_msg = f"Successfully fetched {len(questions_data)} questions. {attachment_count} questions have attachments. Ready to generate answers."
        
        return status_msg, df
        
    except requests.exceptions.RequestException as e:
        return f"Error fetching questions: {e}", None
    except Exception as e:
        return f"An unexpected error occurred: {e}", None

def generate_answers_async(model_name: str = "meta-llama/Llama-3.1-8B-Instruct", progress_callback=None):
    """
    Generate answers for all cached questions asynchronously using the intelligent agent.
    """
    global cached_answers, processing_status
    
    if not cached_questions:
        return "No questions available. Please fetch questions first."
    
    processing_status["is_processing"] = True
    processing_status["progress"] = 0
    processing_status["total"] = len(cached_questions)
    
    try:
        agent = IntelligentAgent(debug=True, model_name=model_name)
        cached_answers = {}
        
        for i, question_data in enumerate(cached_questions):
            if not processing_status["is_processing"]:  # Check if cancelled
                break
                
            task_id = question_data.get("task_id")
            question_text = question_data.get("question")
            
            if not task_id or question_text is None:
                continue
                
            try:
                # Use the new method that handles attachments
                answer = agent.process_question_with_attachments(question_data)
                cached_answers[task_id] = {
                    "question": question_text,
                    "answer": answer
                }
            except Exception as e:
                cached_answers[task_id] = {
                    "question": question_text,
                    "answer": f"AGENT ERROR: {e}"
                }
            
            processing_status["progress"] = i + 1
            if progress_callback:
                progress_callback(i + 1, len(cached_questions))
                
    except Exception as e:
        print(f"Error in generate_answers_async: {e}")
    finally:
        processing_status["is_processing"] = False

def start_answer_generation(model_choice: str):
    """
    Start the answer generation process in a separate thread.
    """
    if processing_status["is_processing"]:
        return "Answer generation is already in progress."
    
    if not cached_questions:
        return "No questions available. Please fetch questions first."
    
    # Map model choice to actual model name
    model_map = {
        "Llama 3.1 8B": "meta-llama/Llama-3.1-8B-Instruct",
        "Llama 3.3 70B": "meta-llama/Llama-3.3-70B-Instruct",
        "Llama 3.3 Shallow 70B": "tokyotech-llm/Llama-3.3-Swallow-70B-Instruct-v0.4",
        "Mistral 7B": "mistralai/Mistral-7B-Instruct-v0.3",
        "Qwen 2.5": "Qwen/Qwen‑2.5‑Omni‑7B",
        #"Qwen 2.5 instruct": "Qwen/Qwen2.5-14B-Instruct-1M",
        "Qwen 3": "Qwen/Qwen3-32B"
        
    }
    
    selected_model = model_map.get(model_choice, "meta-llama/Llama-3.1-8B-Instruct")
    
    # Start generation in background thread
    thread = threading.Thread(target=generate_answers_async, args=(selected_model,))
    thread.daemon = True
    thread.start()
    
    return f"Answer generation started using {model_choice}. Check progress."

   
def get_generation_progress():
    """
    Get the current progress of answer generation.
    """
    if not processing_status["is_processing"] and processing_status["progress"] == 0:
        return "Not started"
    
    if processing_status["is_processing"]:
        progress = processing_status["progress"]
        total = processing_status["total"]
        status_msg = f"Generating answers... {progress}/{total} completed"
        return status_msg
    else:
        # Generation completed
        if cached_answers:
            # Create DataFrame with results
            display_data = []
            for task_id, data in cached_answers.items():
                display_data.append({
                    "Task ID": task_id,
                    "Question": data["question"][:100] + "..." if len(data["question"]) > 100 else data["question"],
                    "Generated Answer": data["answer"][:200] + "..." if len(data["answer"]) > 200 else data["answer"]
                })
            
            df = pd.DataFrame(display_data)
            status_msg = f"Answer generation completed! {len(cached_answers)} answers ready for submission."
            return status_msg, df
        else:
            return "Answer generation completed but no answers were generated."

def submit_cached_answers(profile: gr.OAuthProfile | None):
    """
    Submit the cached answers to the evaluation API.
    """
    global cached_answers
    
    if not profile:
        return "Please log in to Hugging Face first.", None
    
    if not cached_answers:
        return "No cached answers available. Please generate answers first.", None
    
    username = profile.username
    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Unknown"
    
    # Prepare submission payload
    answers_payload = []
    for task_id, data in cached_answers.items():
        answers_payload.append({
            "task_id": task_id,
            "submitted_answer": data["answer"]
        })
    
    submission_data = {
        "username": username.strip(),
        "agent_code": agent_code,
        "answers": answers_payload
    }
    
    # Submit to API
    api_url = DEFAULT_API_URL
    submit_url = f"{api_url}/submit"
    
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        
        # Create results DataFrame
        results_log = []
        for task_id, data in cached_answers.items():
            results_log.append({
                "Task ID": task_id,
                "Question": data["question"],
                "Submitted Answer": data["answer"]
            })
        
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
        
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except:
            error_detail += f" Response: {e.response.text[:500]}"
        return f"Submission Failed: {error_detail}", None
        
    except requests.exceptions.Timeout:
        return "Submission Failed: The request timed out.", None
        
    except Exception as e:
        return f"Submission Failed: {e}", None

def clear_cache():
    """
    Clear all cached data.
    """
    global cached_answers, cached_questions, processing_status
    cached_answers = {}
    cached_questions = []
    processing_status = {"is_processing": False, "progress": 0, "total": 0}
    return "Cache cleared successfully.", None

# --- Enhanced Gradio Interface ---
with gr.Blocks(title="Intelligent Agent with Media Processing") as demo:
    gr.Markdown("# Intelligent Agent with Conditional Search and Media Processing")
    gr.Markdown("This agent can process images and audio files, uses an LLM to decide when search is needed, optimizing for both accuracy and efficiency.")

    with gr.Row():
        gr.LoginButton()
        clear_btn = gr.Button("Clear Cache", variant="secondary")

    with gr.Tab("Step 1: Fetch Questions"):
        gr.Markdown("### Fetch Questions from API")
        fetch_btn = gr.Button("Fetch Questions", variant="primary")
        fetch_status = gr.Textbox(label="Fetch Status", lines=2, interactive=False)
        questions_table = gr.DataFrame(label="Available Questions", wrap=True)
        
        fetch_btn.click(
            fn=fetch_questions,
            outputs=[fetch_status, questions_table]
        )

    with gr.Tab("Step 2: Generate Answers"):
        gr.Markdown("### Generate Answers with Intelligent Search Decision")
        
        with gr.Row():
            model_choice = gr.Dropdown(
                choices=["Llama 3.1 8B", "Llama 3.3 70B", "Llama 3.3 Shallow 70B", "Mistral 7B", "Qwen 2.5", "Qwen 3"],
                value="Llama 3.1 8B",
                label="Select Model"
            )
            generate_btn = gr.Button("Start Answer Generation", variant="primary")
            refresh_btn = gr.Button("Refresh Progress", variant="secondary")
        
        generation_status = gr.Textbox(label="Generation Status", lines=2, interactive=False)
        answers_table = gr.DataFrame(label="Generated Answers", wrap=True)
        
        generate_btn.click(
            fn=start_answer_generation,
            inputs=[model_choice],
            outputs=generation_status
        )
        
        refresh_btn.click(
            fn=get_generation_progress,
            outputs=[generation_status, answers_table]
        )

    with gr.Tab("Step 3: Submit Results"):
        gr.Markdown("### Submit Generated Answers")
        submit_btn = gr.Button("Submit Answers", variant="primary")
        submit_status = gr.Textbox(label="Submission Status", lines=4, interactive=False)
        results_table = gr.DataFrame(label="Submission Results", wrap=True)
        
        submit_btn.click(
            fn=submit_cached_answers,
            outputs=[submit_status, results_table]
        )

    
    # Clear cache functionality
    clear_btn.click(
        fn=clear_cache,
        outputs=[fetch_status, questions_table]
    )

if __name__ ==  "__main__":
    demo.launch()