Spaces:
Sleeping
Sleeping
File size: 1,304 Bytes
45aff15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
import os
import whisper
import soundfile as sf
# Assuming you have your .env file configured with necessary API keys or configurations
# load_dotenv()
# Initialize the model outside the main app function to load it only once
model = whisper.load_model("base")
def transcribe_audio(audio_file):
# Save the audio file to a temporary file
with open("temp_audio_file", "wb") as f:
f.write(audio_file.getbuffer())
# Transcribe the audio file using the Whisper model
result = model.transcribe("temp_audio_file")
return result["text"]
# Streamlit app
def main():
st.title('USE ME TO TRANSCRIBE')
# Audio file uploader
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a", "ogg", "flac"])
if uploaded_file is not None:
# Show a button to start the transcription process
if st.button('Transcribe'):
# Show a message while transcribing
with st.spinner('Transcribing...'):
text = transcribe_audio(uploaded_file)
# Show the transcription
st.subheader('Transcription:')
st.write(text)
else:
st.write('Upload an audio file to get started.')
if __name__ == "__main__":
main()
|