Spaces:
Sleeping
Sleeping
init
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
import whisper
|
4 |
+
import soundfile as sf
|
5 |
+
|
6 |
+
# Assuming you have your .env file configured with necessary API keys or configurations
|
7 |
+
# load_dotenv()
|
8 |
+
|
9 |
+
# Initialize the model outside the main app function to load it only once
|
10 |
+
model = whisper.load_model("base")
|
11 |
+
|
12 |
+
def transcribe_audio(audio_file):
|
13 |
+
# Save the audio file to a temporary file
|
14 |
+
with open("temp_audio_file", "wb") as f:
|
15 |
+
f.write(audio_file.getbuffer())
|
16 |
+
|
17 |
+
# Transcribe the audio file using the Whisper model
|
18 |
+
result = model.transcribe("temp_audio_file")
|
19 |
+
return result["text"]
|
20 |
+
|
21 |
+
# Streamlit app
|
22 |
+
def main():
|
23 |
+
st.title('USE ME TO TRANSCRIBE')
|
24 |
+
|
25 |
+
# Audio file uploader
|
26 |
+
uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "m4a", "ogg", "flac"])
|
27 |
+
|
28 |
+
if uploaded_file is not None:
|
29 |
+
# Show a button to start the transcription process
|
30 |
+
if st.button('Transcribe'):
|
31 |
+
# Show a message while transcribing
|
32 |
+
with st.spinner('Transcribing...'):
|
33 |
+
text = transcribe_audio(uploaded_file)
|
34 |
+
|
35 |
+
# Show the transcription
|
36 |
+
st.subheader('Transcription:')
|
37 |
+
st.write(text)
|
38 |
+
else:
|
39 |
+
st.write('Upload an audio file to get started.')
|
40 |
+
|
41 |
+
if __name__ == "__main__":
|
42 |
+
main()
|