File size: 4,958 Bytes
fb992f3
 
 
a4e6581
 
 
093bbe1
a4e6581
 
093bbe1
 
a4e6581
 
 
093bbe1
 
 
c6252e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
093bbe1
c6252e6
 
 
093bbe1
 
c6252e6
 
 
 
 
 
 
093bbe1
 
 
c6252e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
093bbe1
c6252e6
 
 
093bbe1
c6252e6
 
 
 
 
093bbe1
 
fb992f3
 
 
 
093bbe1
67ffc3f
 
 
 
c6252e6
 
 
 
fb992f3
 
 
c6252e6
 
 
fb992f3
 
 
 
 
c6252e6
093bbe1
c6252e6
 
fb992f3
 
 
 
 
c6252e6
093bbe1
001e99e
 
 
c6252e6
 
 
001e99e
67ffc3f
 
001e99e
67ffc3f
 
 
001e99e
67ffc3f
 
 
 
001e99e
67ffc3f
 
 
 
 
 
 
001e99e
67ffc3f
c6252e6
2731d0d
 
 
67ffc3f
 
 
2731d0d
67ffc3f
2731d0d
 
67ffc3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2731d0d
67ffc3f
 
2731d0d
67ffc3f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import csv
import sys

import gradio as gr
import numpy as np
import skimage.transform
import torch
import torchvision.models as models
import torchvision.transforms as transforms
from matplotlib import pyplot as plt
from numpy import matlib as mb
from PIL import Image

csv.field_size_limit(sys.maxsize)


def compute_spatial_similarity(conv1, conv2):
    conv1 = conv1.reshape(-1, 7 * 7).T
    conv2 = conv2.reshape(-1, 7 * 7).T

    pool1 = np.mean(conv1, axis=0)
    pool2 = np.mean(conv2, axis=0)
    out_sz = (int(np.sqrt(conv1.shape[0])), int(np.sqrt(conv1.shape[0])))
    conv1_normed = conv1 / np.linalg.norm(pool1) / conv1.shape[0]
    conv2_normed = conv2 / np.linalg.norm(pool2) / conv2.shape[0]
    im_similarity = np.zeros((conv1_normed.shape[0], conv1_normed.shape[0]))

    for zz in range(conv1_normed.shape[0]):
        repPx = mb.repmat(conv1_normed[zz, :], conv1_normed.shape[0], 1)
        im_similarity[zz, :] = np.multiply(repPx, conv2_normed).sum(axis=1)
    similarity1 = np.reshape(np.sum(im_similarity, axis=1), out_sz)
    similarity2 = np.reshape(np.sum(im_similarity, axis=0), out_sz)
    return similarity1, similarity2


display_transform = transforms.Compose(
    [transforms.Resize(256), transforms.CenterCrop((224, 224))]
)

imagenet_transform = transforms.Compose(
    [
        transforms.Resize(256),
        transforms.CenterCrop((224, 224)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)


class Wrapper(torch.nn.Module):
    def __init__(self, model):
        super(Wrapper, self).__init__()
        self.model = model
        self.layer4_ouputs = None

        def fw_hook(module, input, output):
            self.layer4_ouputs = output

        self.model.layer4.register_forward_hook(fw_hook)

    def forward(self, input):
        _ = self.model(input)
        return self.layer4_ouputs


def get_layer4(input_image):
    l4_model = models.resnet50(pretrained=True)
    l4_model.eval()
    wrapped_model = Wrapper(l4_model)

    with torch.no_grad():
        data = imagenet_transform(input_image).unsqueeze(0)
        reference_layer4 = wrapped_model(data)

    return reference_layer4.data.to("cpu").numpy()


def NormalizeData(data):
    return (data - np.min(data)) / (np.max(data) - np.min(data))


# Visualization
def visualize_similarities(image1, image2):
    print(f"image1: {image1}")
    print(f"image2: {image2}")
    print(type(image1))
    a = get_layer4(image1).squeeze()
    b = get_layer4(image2).squeeze()
    sim1, sim2 = compute_spatial_similarity(a, b)

    sim1 = NormalizeData(sim1)
    sim2 = NormalizeData(sim2)

    fig, axes = plt.subplots(1, 2, figsize=(12, 5))
    axes[0].imshow(display_transform(image1))
    im1 = axes[0].imshow(
        skimage.transform.resize(sim1, (224, 224)),
        alpha=0.5,
        cmap="jet",
        vmin=0,
        vmax=1,
    )

    axes[1].imshow(display_transform(image2))
    im2 = axes[1].imshow(
        skimage.transform.resize(sim2, (224, 224)),
        alpha=0.5,
        cmap="jet",
        vmin=0,
        vmax=1,
    )

    axes[0].set_axis_off()
    axes[1].set_axis_off()

    fig.colorbar(im1, ax=axes[0])
    fig.colorbar(im2, ax=axes[1])
    plt.tight_layout()

    # q_image = display_transform(image1)
    # nearest_image = display_transform(image2)

    # # make a binarized veruin of the Q
    # fig2, ax2 = plt.subplots(1, figsize=(5, 5))
    # ax2.imshow(display_transform(image1))

    # # create a binarized version of  sim1 , for value below 0.5 set to 0 and above 0.5 set to 1
    # sim1_bin = np.where(sim1 > 0.5, 1, 0)
    # # create a binarized version of  sim2 , for value below 0.5 set to 0 and above 0.5 set to 1
    # sim2_bin = np.where(sim2 > 0.5, 1, 0)

    # ax2.imshow(
    #     skimage.transform.resize(sim1_bin, (224, 224)),
    #     alpha=1,
    #     cmap="binary",
    #     vmin=0,
    #     vmax=1,
    # )

    return fig


blocks = gr.Blocks()

with blocks as demo:
    gr.Markdown("# Visualizing Deep Similarity Networks")
    gr.Markdown("A quick demo to visualize the similarity between two images.")
    gr.Markdown(
        "[Original Paper](https://arxiv.org/pdf/1901.00536.pdf) - [Github Page](https://github.com/GWUvision/Similarity-Visualization)"
    )

    with gr.Row():
        with gr.Column():
            image1 = gr.Image(label="Image 1", type="pil")
            image2 = gr.Image(label="Image 2", type="pil")
        with gr.Column():
            sim1_output = gr.Plot()

    examples = gr.Examples(
        examples=[
            [
                "./examples/Red_Winged_Blackbird_0012_6015.jpg",
                "./examples/Red_Winged_Blackbird_0025_5342.jpg",
            ],
        ],
        inputs=[image1, image2],
    )

    btn = gr.Button("Compute Similarity")
    btn.click(visualize_similarities, inputs=[image1, image2], outputs=[sim1_output])

    demo.launch(debug=True)
# blocks.launch(debug=True)