Spaces:
Sleeping
Sleeping
Initial Commit
Browse files- app.py +98 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from matplotlib import pyplot as plt
|
3 |
+
from PIL import Image
|
4 |
+
import numpy as np
|
5 |
+
from numpy import matlib as mb
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
import torchvision.models as models
|
8 |
+
import skimage.transform
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
|
12 |
+
def compute_spatial_similarity(conv1, conv2):
|
13 |
+
"""
|
14 |
+
Takes in the last convolutional layer from two images, computes the pooled output
|
15 |
+
feature, and then generates the spatial similarity map for both images.
|
16 |
+
"""
|
17 |
+
conv1 = conv1.reshape(-1, 7*7).T
|
18 |
+
conv2 = conv2.reshape(-1, 7*7).T
|
19 |
+
|
20 |
+
pool1 = np.mean(conv1, axis=0)
|
21 |
+
pool2 = np.mean(conv2, axis=0)
|
22 |
+
out_sz = (int(np.sqrt(conv1.shape[0])),int(np.sqrt(conv1.shape[0])))
|
23 |
+
conv1_normed = conv1 / np.linalg.norm(pool1) / conv1.shape[0]
|
24 |
+
conv2_normed = conv2 / np.linalg.norm(pool2) / conv2.shape[0]
|
25 |
+
im_similarity = np.zeros((conv1_normed.shape[0], conv1_normed.shape[0]))
|
26 |
+
|
27 |
+
for zz in range(conv1_normed.shape[0]):
|
28 |
+
repPx = mb.repmat(conv1_normed[zz,:],conv1_normed.shape[0],1)
|
29 |
+
im_similarity[zz,:] = np.multiply(repPx,conv2_normed).sum(axis=1)
|
30 |
+
similarity1 = np.reshape(np.sum(im_similarity,axis=1),out_sz)
|
31 |
+
similarity2 = np.reshape(np.sum(im_similarity,axis=0),out_sz)
|
32 |
+
return similarity1, similarity2
|
33 |
+
|
34 |
+
# Get Layer 4
|
35 |
+
|
36 |
+
display_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop((224, 224))])
|
37 |
+
|
38 |
+
imagenet_transform = transforms.Compose(
|
39 |
+
[transforms.Resize(256),
|
40 |
+
transforms.CenterCrop((224, 224)),
|
41 |
+
transforms.ToTensor(),
|
42 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
|
43 |
+
|
44 |
+
|
45 |
+
class Wrapper(torch.nn.Module):
|
46 |
+
def __init__(self, model):
|
47 |
+
super(Wrapper, self).__init__()
|
48 |
+
self.model = model
|
49 |
+
self.layer4_ouputs = None
|
50 |
+
def fw_hook(module, input, output):
|
51 |
+
self.layer4_ouputs = output
|
52 |
+
self.model.layer4.register_forward_hook(fw_hook)
|
53 |
+
|
54 |
+
def forward(self, input):
|
55 |
+
_ = self.model(input)
|
56 |
+
return self.layer4_ouputs
|
57 |
+
|
58 |
+
def __repr__(self):
|
59 |
+
return "Wrapper"
|
60 |
+
|
61 |
+
def get_layer4(input_image):
|
62 |
+
l4_model = models.resnet50(pretrained=True)
|
63 |
+
l4_model = l4_model.cuda()
|
64 |
+
l4_model.eval();
|
65 |
+
wrapped_model = Wrapper(l4_model)
|
66 |
+
|
67 |
+
with torch.no_grad():
|
68 |
+
data = imagenet_transform(input_image).unsqueeze(0)
|
69 |
+
data = data.cuda()
|
70 |
+
reference_layer4 = wrapped_model(data)
|
71 |
+
|
72 |
+
return reference_layer4.data.to('cpu').numpy()
|
73 |
+
|
74 |
+
# Visualization
|
75 |
+
def visualize_similarities(image1, image2):
|
76 |
+
a = get_layer4(image1).squeeze()
|
77 |
+
b = get_layer4(image2).squeeze()
|
78 |
+
sim1, sim2 = compute_spatial_similarity(a, b)
|
79 |
+
|
80 |
+
fig, axes = plt.subplots(1, 2, figsize=(12, 5))
|
81 |
+
axes[0].imshow(display_transform(image1))
|
82 |
+
im1=axes[0].imshow(skimage.transform.resize(sim1, (224, 224)), alpha=0.6, cmap='jet')
|
83 |
+
# axes[0].colorbar()
|
84 |
+
|
85 |
+
axes[1].imshow(display_transform(image2))
|
86 |
+
im2=axes[1].imshow(skimage.transform.resize(sim2, (224, 224)), alpha=0.6, cmap='jet')
|
87 |
+
# axes[1].colorbar()
|
88 |
+
|
89 |
+
fig.colorbar(im1, ax=axes[0])
|
90 |
+
fig.colorbar(im2, ax=axes[1])
|
91 |
+
plt.tight_layout()
|
92 |
+
return fig
|
93 |
+
|
94 |
+
# GRADIO APP
|
95 |
+
iface = gr.Interface(fn=visualize_similarities,
|
96 |
+
inputs=[gr.inputs.Image(shape=(300, 300), type='pil'),
|
97 |
+
gr.inputs.Image(shape=(300, 300), type='pil')], outputs="plot")
|
98 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio==2.4.5
|
2 |
+
matplotlib==3.4.3
|
3 |
+
numpy==1.21.2
|
4 |
+
Pillow==8.4.0
|
5 |
+
scikit_image==0.18.3
|
6 |
+
skimage==0.0
|
7 |
+
torch==1.10.0
|
8 |
+
torchvision==0.11.1
|